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a b s t r a c t

We developed a Ginzburg-Landau model of long-period stacking order (LPSO) lamellar structure
observed in magnesium alloys. Contrary to other models, we do not treat LPSO as a homogeneous stoi-
chiometric phase but as a chemically modulated heterogeneous structure of parallel plates of two phases
with different compositions and degrees of ordering. The Turing instability that is, existence of a finite-
wavelength linear-instability mode was identified as the origin of formation of LPSO structure. The pro-
cess of LPSO formation can be understood as a process of finding local minima and saddle points on the
free energy landscape of the system. The model explained transformation between the two most com-
mon LPSO structures, 18R and 14H, and their general resistance to coarsening. The model can be used
for the design of new LPSO materials.

� 2016 Elsevier B.V. All rights reserved.

1. Background

A novel group of Mg-based alloys discovered 15 years ago [1,2]
is considered for potential applications in many different indus-
tries due to their excellent mechanical and thermal properties. This
group of alloys is characterized by the structural order with long
periods along the c-axis of the hexagonal close-packed planes of
Mg matrix. This feature was called long-period stacking order
(LPSO). All the alloys of the group have similarities in composition
and processing that lead to formation of LPSO [1–8]. These are
ternary Mg-TM-RE (TM-Transition Metal: zinc, copper, etc.; RE-
Rear Earth: yttrium, gadolinium, etc.) alloys with a small overall
concentration of the heavy elements. The distinct features of LPSO
in Mg-2 at.% Y-1 at.% Zn—the most prominent member of the
group—are the following [1–8]:

1. LPSO structures emerge either directly after the process of rapid
solidification or/and after hot extrusion of the alloy. Both pro-
cesses have large driving force of transformation.

2. The as-cast/extruded microstructures are composed of grains of
two types and intermetallic particles along the grain bound-
aries. The Mg-Y grains have hcp structure and are featureless.
The Mg-Y-Zn grains have fine-lamellar features with character-
istic 18R structure.

3. LPSO is a strictly periodic lamellar structure of coexisting, alter-
nating plates of hcp a-Mg solid solution and fcc phase with
intrinsic stacking faults of the close-packed planes.

4. There is strong synchronization between the periodicity of the
lamellae and chemical modulations in the plates with the a-
Mg being almost completely void of the heavy elements and
the fcc phase having practically fixed concentration of Zn and
Y in the inner close-packed planes.

5. LPSO is practically a one-dimensional structure with the main
variations in the c-direction of the a-Mg crystalline lattice.

6. LPSO structures, characterized as 18R-type, are made of build-
ing blocks that have the same stacking orientations while those
of 14H-type are made of the building blocks that are in twin-
orientation relationship.

7. 18R-type structure is highly resistant to change during heat
treatment or overall variation in alloy composition. However,
annealing at 500 �C transforms the 18R-type structure to the
14H-type structure through the intermediate 24R-type
structure.

2. Ginzburg-Landau model of LPSO structure formation

2.1. Basic ideas

In this Section we propose a theoretical model of the LPSO
structure of Mg-Zn-Y alloys. Main questions to be addressed by
the model are: What is the phase content of the LPSO structure?
Why is the structure strictly periodic and chemically synchro-
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nized? Why does this highly heterogeneous structure not coarsen
quickly?

According to our model LPSO is not aphase but a two-phase
structure, which consists of alternating plates of the disordered
a-Mg solid solution (a-phase) and ordered fcc phase with intrinsic
stacking faults and composition Mg1�Xb (Y4Zn3)Xb (b-phase). Alloy-
ing Mg (atomic radius 0.16 nm) with Y (atomic radius 0.18 nm)
and Zn (atomic radius 0.14 nm) in proportions close to 4/3 practi-
cally removes the local strain since the average size of (Y + Zn)
atoms is close to that of Mg [7]. This creates a virtual-solute species
and a quasi-binary alloywith a very small amount of internal (built-
in) stress. The remaining mismatch of atomic radii introduces shear
strain between the atomic planes, which gives rise to the stacking
faults in the crystalline lattice and two different orientations of the
b-phase. In this regard, LPSO structure has strong similarities with
the martensitic structure [6].

The LPSO structure forms in the precipitate particles in a pro-
cess with large driving force of transformation. Formation of LPSO
structure is not due to the mechanism of spinodal decomposition.
It is rather a result of the so-called Turing instability when the
structures emerge as a synchronous interplay of the two compet-
ing processes: in this case—ordering and diffusion [9–12]. Periodic-
ity of the emerging structure in the precipitate particle is dictated
by the most unstable mode of the fluctuations of order and compo-
sition. Initial period of the emerging structure grows because, over-
all, structural homogenization decreases the total free energy of
the system. The 18R-type structure forms when the driving force
for coarsening becomes not enough to overcome the barrier due
to discreteness of the crystalline lattice. If the temperature of the
system is raised, the free energies of the structures increase and
the coarsening may resume, leading to the formation of a coarser
structure with larger period (14H-type). This process may be called
LPSO coarsening.

2.2. Phase-field theory of diffusional transformations

In this Section, we recall the basic principles of the phase-field
theory of diffusional transformations, which will be used below for
the LPSO modeling [13,14]. The Gibbs free energy of a two-
component system is expressed by a Ginzburg-Landau functional
[15]:

Gfg;Xg ¼
Z
V
d3x gðg;XÞ þ 1

2
jgðrgÞ2 þ 1

2
jXðrXÞ2

� �
ð1Þ

where g is the Gibbs free energy density of a homogeneous system
(we consider its molar density to be constant), g(x, t) and X(x, t)
are, respectively, continuously distributed order parameter (OP)
and concentration fields, jg and jX are the order-parameter and
composition gradient-energy coefficients and V is the volume.
Dynamics of the system is described by the time-dependent
Ginzburg-Landau equation (TDGLE) for the order-parameter field
evolution:

dg
dt

¼ �c dG
dg

ð2aÞ

and Cahn-Hilliard equation (CHE) for the evolution of the concen-
tration field [14,15]:

dX
dt

¼ rMr dG
dX

ð2bÞ

where c is the relaxation coefficient and M is the species mobility.
Equilibrium states of the system described by Eqs. (1) and (2) satisfy
equations: dG=dg ¼ dG=dX ¼ 0. As known [13,14], the set of homo-
geneous solutions of these equations contains phases of the system
and the potential barriers, represented by the saddle points. In this
work we are looking at a system consisting of two phases, e.g., a-

phase (ga, Xa) and b-phase (gb, Xb) where the latter may have
two orientation variants: b+ and b�. The heterogeneous solutions
of the equilibrium equations can be classified based on their dimen-
sionalities. The set of one-dimensional (1D) solutions contains
equilibrium two-phase interfaces, critical plates, and periodic solu-
tions, sometimes called periodons. (2D and 3D solutions will not
be of interest in this publication.) An interface is a transition zone
of finite thickness. A critical plate is a localized excitation of order
of finite amount. A periodon consist of interacting plates of finite
thickness. All 1D equilibrium structures are characterized by the
free-energy excess per unit area measured in the direction perpen-
dicular to the direction of variation of the structures (the c-direction
in our case) [14]:

r1D ¼
Z þ1

�1
jg

dg
dx

� �2

þ jX
dX
dx

� �2
( )

dx ð3Þ

For the two-phase equilibrium interface, this amounts to the inter-
facial energy r. The free-energy excess makes the periodic struc-
tures unstable and gives rise to the coarsening mechanism, which
is significantly different from the traditional Lifshitz-Slyozov one.
The driving force of the latter is the curvature of the interphase
interfaces; it vanishes when the interfaces are flat. The driving force
of the former is the free-energy excess itself; it exists even when all
interfaces are flat. The difference in the driving forces leads to the
difference in structural evolutions of the systems.

The homogeneous equilibrium states of thesystem may be
stable, metastable or unstable. Transformation out of a metastable
state proceeds via a process of nucleation. An unstable state
decomposes, so to speak, by itself that is, due to small fluctuations,
which are always present in thesystem. To examine initial stages of
the decomposition of a homogeneous unstable equilibrium state
(ggg < 0), we superimpose on it adisturbance in the form of a linear
mode {Dg, DX}={H,H}exp(bt + i k�x) where b is an amplification
rate and k is a 3D wave-vector, substitute it into Eq. (2), linearize
them and find that, for the mode to be a solution, the following
characteristic equation must be satisfied:

b
c
þ jgk

2 þ ggg

� �
b
M

þ ðjXk
2 þ gXXÞk2

� �
¼ g2

gXk
2 ð4Þ

where k = |k|. The characteristic Eq. (4) has two branches. If ggX = 0,
these are the transformation branch bc = �c(ggg + jgk2) and diffu-
sive branch bM = �M(gXX + jgk2)k2 that is, the processes proceed
independently. Spinodal decomposition is an important limiting
case of this regime when gXX < 0 (miscibility gap) and jX – 0 (uphill
diffusion). If ggX – 0, the transformation and diffusion processes
interact and the branches morph into b+(k) and b�(k) with
b+(k)P b�(k). The more important branch b+(k) has the following
characteristic modes: the uniform (k0 = 0, b0 ? 0), the cutoff
(kc – 0, bc = 0), and the most unstable (kT, bT = max). The latter
dominates initial structure formation during decomposition of an
unstable homogeneous system. The case when the most unstable
mode is not uniform that is, kT > 0 is called Turing instability [9,10].

Let us look at the decomposition of unstable states (ggg < 0) of a
binary system without the miscibility gap (gXX > 0). In such system
the uphill diffusion is not important and we can disregard the con-
centration gradient-energy coefficient (jX = 0). Then the uniform
and cutoff modes are characterized by:

b0 ¼ �cggg ð5aÞ

k2c ¼ � ggg
jg

ðAþ 1Þ ð5bÞ

A � � g2
gX

ggggXX
ð5cÞ
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