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a b s t r a c t

The evolution of grains during coarsening phenomena like Ostwald ripening is a focus of recent and ongo-
ing research. In the present paper, a new and flexible model is proposed that describes the statistical evo-
lution of the ‘‘typical” individual grain size as a function of neighborhood characteristics. The grain size
evolution (GSE) model defines a stochastic process based on contemporary mathematical techniques and
requires only few (natural) assumptions. It is fitted to time-resolved experimental data of a semisolid Al–
Cu alloy, in which the coarsening phase has an ultra-high volume fraction VV ¼ 0:93. Evaluation shows
that the model describes the experimental data quite closely. The nature of this modeling approach
serves to improve the understanding of coarsening processes at the intermediate level between coarsen-
ing mechanisms and global statistical properties. Furthermore, the model enables predictive simulations
to be performed, based on an extension of an existing 3D microstructure model (Spettl et al., 2015) to 4D.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ostwald ripening is a process that occurs in multiphase sys-
tems, where particles (or droplets) of one phase are embedded in
a matrix of one or more other phases. In order to minimize the
excess energy contributed by interphase boundaries, large parti-
cles grow while small particles shrink and, ultimately, disappear.
An introduction to Ostwald ripening and its experimental and the-
oretical investigation can be found in, e.g., [1–6], whereby the most
important theoretical treatment of Ostwald ripening is the so-
called LSW theory, presented by Lifshitz and Slyozov [7] as well
as Wagner [8] in the early sixties. The latter describes the case of
a vanishingly small volume fraction VV of the coarsening phase,
for which it is possible to treat every particle as an isolated object
– i.e., direct interactions between particles are not considered. The
LSW theory predicts a power-law growth of the mean particle size
(with exponent 3) and a particle size distribution whose shape
does not change over time. In particular, the particle size distribu-
tion normalized to expectation unity is always the same distribu-
tion (statistical self-similarity [9]). However, the situation is
more complicated for volume fractions VV that are not near zero
[10–15], which has become a popular topic of recent research in
the field. For example, experimental investigations [16–19],

analytical theories [20,21] and large-scale computer simulations
– based on, e.g., phase-field and Monte-Carlo methods [22–25] –
have focused on volume fractions of technological relevance.
Results suggest that the power-law growth and the self-
similarity of particle size distributions still hold, although the
shape of the particle size distribution changes at higher VV

[22,24], and for VV > 0:9 the power-law exponent may manifest
a crossover to that of single-phase grain growth (exponent 2 at
VV ¼ 1:0) [22]. However, convergence to steady-state conditions
can be slow [26,27].

The approaches mentioned above are all important for an
improved understanding of the coarsening process. Yet, other
(complementary) approaches have their merits, as well. For exam-
ple, stochastic modeling of microstructures helps to identify the
relevant structural characteristics of a given material, encompass-
ing not only the average values of specific structural parameters
but also their local fluctuations and spatial correlations. A stochas-
tic 3D microstructure model for polycrystalline materials has been
presented in [28], where the model was fitted to experimental data
obtained for an Al-5 wt% Cu alloy heated to 592 �C. However, in
[28] the dynamics of microstructural evolution were captured only
at the statistical level but not for individual particles (hereafter
referred to as grains). We aim to remedy this situation in the pre-
sent paper. Our new treatment has several benefits. A stochastic
description of individual grains and their evolution over time is
useful to determine simple characteristics that influence (or, at
least, are correlated with) the local evolution of grain sizes. The
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stochastic modeling approach proposed in the present paper can
identify and account for such dependencies, while subsuming
any additional, not-yet-identified factors influencing evolution to
the ‘‘randomness” of the system. Note that stochastic models
describing the evolution of grains have two important advantages.
First, it is possible to identify (locally estimated) parameters of the
microstructure that have a high impact on the local evolution. Sec-
ond, predictive simulations are possible. As mentioned in [28], the
latter is important for, e.g., the multiscale computational models
that are employed in Integrated Computational Materials Engi-
neering (ICME) [29].

In this paper, we present a stochastic model that predicts
changes in grain volume based on current grain size and character-
istics of its neighborhood. More precisely, the model not only pre-
dicts the expected evolution of grain size but also its probability
distribution – i.e., the possible new grain sizes and their likeli-
hoods. We call this model the grain size evolution (GSE) model.
The latter is based on just a few assumptions – power-law growth
[7,8], self-similarity [7–9], temporal and spatial Markov property
[30,31] – and a further contemporary mathematical technique,
the modeling of multivariate distributions with copulas [32,33].
The GSE model describes the dynamical behavior of the ‘‘typical”1

individual grain. In a second step, the 3D model for entire grain sys-
tems [28] is extended to 4D by integrating the GSE model.

We show the capability of the model to represent phenomena
observed in real materials by fitting it to time-resolved experimen-
tal data of a semisolid Al–Cu alloy, in which the coarsening phase
occupies an ultra-high volume fraction (VV ¼ 0:93). These data
were captured in situ with synchrotron X-ray tomography. It turns
out that a large number of grains can be tracked, although the com-
plexity of the image data renders it laborious to achieve high track-
ing efficiencies. Fortunately, even incomplete microstructural
information suffices to establish the values of model parameters
such that growth of individual grains is predicted quite accurately.

2. Experimental data, imaging and segmentation

In this section, the experimental sample, its time-resolved
structural characterization, and image data processing are
described.

2.1. Experimental sample and in situ 3D imaging

The experimental data considered here were drawn from the
same measurements that were considered in [28]; however, now
the time resolution of the data is exploited. Salient facts regarding
sample preparation and 3D imaging are reviewed below.

An ingot of the alloy Al-5 wt% Cu was homogenized at 500 �C for
24 h in air and subsequently cold-rolled to a thickness reduction of
50%. Cylindrical specimens – 8:5 mm in length and 4 mm in diam-
eter – were cut from the rolled plate by spark erosion. A furnace
was constructed to allow for time-resolved in situ tomographic
characterization of such samples using X-ray radiation at beamline
ID15A of the European Synchrotron Radiation Facility (ESRF). Over
the course of 25 h, a tomographic scan was recorded every 10 min
while the specimen was held at 592 �C, which placed it in a semi-
solid state consisting of solid particles surrounded by a liquid
matrix. Absorption-contrast tomography is able to distinguish
between the particles and the matrix because the liquid absorbs

X-rays more strongly than does the solid phase. This is due to the
higher concentration of Cu dissolved in the matrix (22:4 wt% vs.
only 3:5 wt% in the solid phase) at 592 �C. Application of the lever
rule to the Al–Cu phase diagram [35] yields a volume fraction of
the solid (coarsening) phase of VV ¼ 0:93 at thermodynamic equi-
librium between the particles and the liquid matrix. The nominal
resolution of the reconstructed tomographic data sets is given by
the voxel side length of 5:36 lm.

We denote the 3D grayscale images obtained in this manner by
It ¼ fItðx; y; zÞ 2 f0; . . . ;255g : ðx; y; zÞ 2 Wg, where W � N3 is the
grid of voxel coordinates, the grayscale values are in f0; . . . ;255g,
and the annealing times t 2 Texp belong to the set
Texp ¼ f200;210; . . . ;750g (all specified in minutes). Note that the
time span between two successive tomograms is always
tstep ¼ 10 min.

Wemake the same assumption as in [28] regarding steady-state
conditions. We cannot be sure that the sample has actually reached
the steady state by 200 min of annealing. Statistical characteristics
(e.g., the distributions of grain sizes and coordination numbers)
seem to indicate the occurrence of self-similar coarsening [28],
but it is still possible that the sample finds itself in a transient
regime, the characteristics of which are evolving very slowly. In
either event, it makes sense to fit a stochastic model to the exper-
imental data, but in the transient case the stochastic model’s pre-
dictive ability applies only to a limited extent beyond the time
span at hand.

2.2. Identification of grains at fixed annealing times

In order to establish the parameters of the GSE model, we will
require information regarding grain-size trajectories [19]. As a
result, we must be able to recognize the same grain at subsequent
or previous time steps, necessitating a consistent labeling of grains
over the course of the measurements. The aim is to obtain a large
number of trajectories, each of which extends over numerous time
steps. In this section, we discuss the identification of individual
grains within 3D data sets. These data form the basis for the track-
ing of grains across time steps, which we address in the following
section.

Image processing was performed in a similar manner as in [28].
Ring artifacts were removed from grayscale data [36] (resulting
image denoted by I0t), a global thresholding step was performed
(binary image denoted by Bt), and a smoothing step was applied
(resulting image denoted by B0

t). The main difference with respect
to the image processing performed in [28] may be found in the
identification of grains. We still employ a watershed transforma-
tion [37–40], but instead of considering so-called extended regional
minima, which we introduced in [28] to reduce the occurrence of
oversegmentation, we now adopt the following simplified
approach, which is computationally faster and therefore better sui-
ted to a large number of 3D data sets. For every local minimum, we
can interpret the minimal distance to a grain boundary (i.e. the
matrix phase) as the radius of a sphere centered at the local min-
imum. We then increase the radius of such a sphere by 10% and
remove every other local minimum located within that sphere that
has a smaller minimal distance than the local minimum at the
sphere center. This thinning of the set of local minima is very sim-
ple and reduces oversegmentation in many cases – i.e., when the
shape of the grains that are to be detected does not deviate too
much from a spherical shape. (The deviations are the reason for
the 10% radius increase.) The result of a marker-based watershed
transformation [38,41] applied to the thinned set of local minima
is a binary image in which any holes in the network of grain
boundaries have been filled in. This image is called B00

t . Finally,
the same postprocessing was performed as in [28], yielding the

1 The terminology ‘‘typical grain” employed in the present paper conveys the
following mathematical concept. Consider a grain ensemble, for which each grain has
properties like size, shape, etc. For an unboundedly increasing number of such grains,
these properties can all be described by probability distributions. Then, the typical
grain is a random grain whose properties have these distributions, and, thus, the
typical grain is representative of the entire grain system – see [34] for further details.

A. Spettl et al. / Computational Materials Science 124 (2016) 290–303 291



Download English Version:

https://daneshyari.com/en/article/1559796

Download Persian Version:

https://daneshyari.com/article/1559796

Daneshyari.com

https://daneshyari.com/en/article/1559796
https://daneshyari.com/article/1559796
https://daneshyari.com

