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a b s t r a c t

The paper gives a brief review of methods to calculate melting curves by molecular dynamics and thor-
oughly investigates the so-called modified Z-method. The modified Z-method combines the ease of
implementation inherent to the original Z-method with advantages the coexistence method offers, but,
as it is shown, needs an improvement. In particular, the resulting liquid-solid states it gives are always
not in hydrostatic equilibrium. To attain to hydrostatic equilibrium, it is necessary to equalize stress com-
ponents in the calculation cell without changing its volume. In a series of simulations for aluminum,
beryllium and iron we have demonstrated that the calculations by the modified Z-method with stress
equalization are as accurate as those by the thermodynamic integration method but at much lower com-
putational cost and do not depend on the system size. As a consequence calculated entropy changes
across melting line allow us to evaluate solid-solid equilibrium lines between crystal phases involved.
A system of 3� 3� 12 fcc unit cells (432 atoms) was the smallest for which we were able to obtain
reliable results. Such a small system size means that, in principle, the method could be used for the
calculation of melting curves by the quantum molecular dynamics.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is quite a challenge to quantitatively describematerial melting
within Classical Molecular Dynamics (CMD). The quantitative
description/prediction of phase diagrams depends largely on the
quality of interatomic potentials being used. However, the determi-
nation of equilibrium parameters for the first-order phase transi-
tions proper to the model of interatomic interaction remains far
from trivial because of a high hysteresis typical for the transitions,
and the smaller the number of particles in the system, the higher
the hysteresis. Accuracy, simplicity and reliability become themost
important features of amethod one uses to calculatemelting curves
by MD when melting temperature is a target parameter for a
semiempirical interatomic potential parameters optimization pro-
cedure or in a modeling material melting from the first principles.
There is a wide variety of methods used to calculate melting curves
within MD. They are based on different theoretical background and
estimate the melting temperature with different accuracy.

1. The Heat Until it Melts (HUM) method [1] is the easiest to imple-
ment and in some sense mimics real-life experiment on melt-
ing. Here the crystal which is modeled in periodic boundary

conditions in a fixed volume (or under a fixed pressure) is put
in a thermostat whose temperature increases with time. In
principle, this is the same as crystal heating in a fixed volume
(or under a fixed pressure) in a real experiment except that
the rate of heating is very high (� 1011 � 1014 K=s) because of
small time scales available for direct MD modeling. At some
time the crystalline structure fails with a jump in pressure
(volume). The temperature at which this happens is taken to
be an estimate of the melting point, more exactly an upper
estimate because the number of particles is small and the rate
of heating is extremely high. The material gets highly super-
heated, and the degree of superheating depends on the size of
the system and the rate of heating. But in general it is difficult
to evaluate to what extent the system is superheated.

2. The hysteresis method. While the upper estimate Tþ
m of the melt-

ing temperature at a fixed pressure can be obtained with the
HUM method, the temperature of ultimate liquid supercooling,
T�
m, at which crystallization starts can be obtained by cooling

the liquid material at the same fixed pressure. Tþ
m and T�

m are
estimates for hysteresis bounds (that is why the method is
referred to as the method of hysteresis [2]) and, respectively,
the upper and lower bounds for the melting temperature. As
stated in [2], the melting temperature Tm can be estimated as

Tm ¼ Tþ
m þ T�

m �
ffiffiffiffiffiffiffiffiffiffiffiffi
Tþ
mT

�
m

q
, but the formula lacks physical under-

pinning. Another shortcoming of the method is that the cooled
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liquid may crystallize into a solid phase which differs from the
initial one and then, in general, the estimate T�

m does not relate
anyhow to the melting curve of the initial phase.

3. The coexistence method. Theoretically, if a material in a fixed vol-
ume is gradually heated, the isochore reaches the line of melt-
ing. After some time, nuclei of a liquid phase form in the
material. As the temperature goes on increasing, they grow to
a critical size and coalesce to produce a liquid phase which is
in equilibrium with the crystal. The amount of the liquid phase
increases under heating, but the system parameters ðP; TÞ
remain on the liquid-solid thermodynamic equilibrium line
until the material completely melts. So, if we construct a system
in such a way as to allow it stay partly in a solid phase and
partly in a liquid phase for a rather long time, then the param-
eters of the system would lie on the line of liquid-solid thermo-
dynamic equilibrium. The coexistence method, or the method
of two phases [3–7], just constructs such systems and determi-
nes the parameters at which the liquid and solid phases coexist
(stay in equilibrium) appreciably long. One of the ways to con-
struct the system is as follows. One first defines a crystal under
a pressure and a temperature slightly below the expected melt-
ing line. Then a half of atoms are ‘‘frozen” and a half are heated
until the crystalline structure fails and then cooled to some
temperature. After that the frozen atoms are released and the
whole system is thermalized as NPT-ensemble. By varying P
and T one can attain to stable states of equilibrium between liq-
uid and solid on the melting curve.
The classical coexistence method [3–7] aims to construct a sys-
tem where liquid and solid phases stay in equilibrium for a long
time at some values of internal energy E and volume V. This cor-
responds to a point ðPm; TmÞ on the equilibrium melting curve.
There is also a non-equilibrium approach [8,9] which does not
seek for equilibrium, but models a small system being initially
half solid and half liquid under constant pressure P and temper-
ature T. Due to the barostat and thermostat the small system
spontaneously overcomes the potential barrier and fully melts
or crystallizes, and the probability to fully melt or crystallize
is defined by the position of P and T relative to the equilibrium
melting curve. For each pair of P and T, one can do a series of
statistically independent calculations starting with the mixed
state and determine the temperature of melting at a given pres-
sure from the frequency of transitions into purely liquid or
purely solid final states.

4. Thermodynamic integration method (TIM). Thermodynamics goes
that the Helmholtz free energy, F ¼ E� TS, of a system at fixed
volume V, number of particles N, and temperature T which is in
equilibrium is minimal. Similarly, the Gibbs thermodynamic
potential, G ¼ F þ PV , is minimal for a system which is in ther-
modynamic equilibrium at constant pressure P, number of par-
ticles N, and temperature T. That is, in order to determine which
of the phases a or b is thermodynamically stable at given T and
V, one should compare appropriate free energies FaðT;VÞ and
FbðT;VÞ (or Gibbs thermodynamic potentials GaðT; PÞ and
GbðT; PÞ for fixed T and P). The melting curve is found as the
intersection of surfaces GðT; PÞ for the solid and liquid phases.
Unfortunately, one cannot calculate free energy, entropy or
Gibbs potential directly in a numerical experiment (as well as
to measure them in real-life experiment) as some thermody-
namic averages or functions of averages without model approx-
imations. However, one can calculate the absolute values of
thermodynamic potentials for the liquid and solid phases with
the Thermodynamic Integration Method (TIM) [10–12]. The
method gives the absolute values of free energy (entropy or
Gibbs potential) for different metastable states by integrating
the energy characteristics of the system along the reversible

quasi-equilibrium path from the state of interest to the state
for which the free energy is known. This method of calculating
the curves of equilibrium between different phases (including
crystal modifications) is most difficult to implement algorithmi-
cally and computationally. But if everything is done accurately,
the resulted phase equilibrium curve satisfies the basic equa-
tion for the equilibrium first-order phase transitions - the
Clapeyron-Clausius equation.
Besides the equilibrium methods that calculate the absolute
values of thermodynamic potentials through thermodynamic
integration along the reversible thermodynamic path [10–12],
there also exist the non-equilibrium methods [13], where the
difference between the free energies of a reference state and
the state of interest is calculated along a particular non-
equilibrium transition rather than along a thermodynamically
equilibrium one. The error from the difference between irre-
versible and equilibrium transitions is proposed to be removed
by implementing the reverse non-equilibrium transition. So,
according to [13], if a non-equilibrium transition proceeds
rather slowly, it satisfies the linear response approximation.
Then the integrals obtained for the direct and reverse transi-
tions will identically differ from a true value calculated for
the equilibrium process, and the slower the transition is, the
smaller the difference. By doing integration in the direct and
reverse non-equilibrium transitions one can find the average
difference between the free energies of the state of interest
and the reference state and avoid the systematic error.
We have to mention here other free energy methods as well. For
example in [14] authors introduced an alternative approach to
directly calculate free energies of fluid and solid pases that does
not require performing any simulations of the transition from
the state of interest to the reference state. Using the perturba-
tion theory [15–17] with a hard sphere reference system
authors directly calculate the free energies of liquid and solid
phases in a single approach with an average relative error
0.55% of the values calculated with TIM.

5. The Z-method [18,19] implements modeling in the following
way. A crystal of a fixed volume of interest is imparted a fixed
thermal energy E (the kinetic energy of atoms) and then a
micro-canonical (NVE) ensemble is modeled for a quite long
time. In parallel, calculations for different values of E are
started. This gives an isochore for volume V and different values
of internal energy E, which in the ðP; TÞ -plane looks like the let-
ter Z, giving the name to the method. Since the Z-method is
rather simple in realization and works for relatively small sys-
tems it is widely used to study melting of various materials
using ab initio molecular dynamics [19–24]. The authors of
the Z-method claim that if the time of calculation is rather long,
the crystal with the highest superheating relative to the true
melting curve must melt into a liquid state with parameters
lying on the melting curve [18,19]. According to the developers
of the Z-method [18] they demonstrate, by molecular dynamics
simulations, that the total energy of a solid at TLS (limit of super-
heating) is equal to the total energy of its liquid at Tm (melting
temperature) at the same volume. However it is not true, and
researchers (even the developers themselves [25]) later found
numerous counterexamples. As for the prediction of the actual
melting temperature, the Z-method is no better than HUM and
only gives an upper estimate for the melting temperature as
well.

6. The modified Z-methodwas proposed in [26]. The modification is
as simple to implement as the Z-method and as accurate and
physics-based as the coexistence method. So, the authors pro-
pose doing calculations by the Z-method with periodic cells
which are elongated in one of the directions. The modification
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