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a b s t r a c t

Dislocations h1 1 0i/2 are usually dissociated into two h1 1 2i/6 partials with a stacking fault in face cen-
tered cubic metals. Their behavior depends strongly on the stacking fault width (SFW) in plastic deforma-
tion. However, there is no quantitative study to correlate the SFW with the dislocation configuration
when these dislocations are grouped together. In this work, the SFW for different dislocation arrays is
analyzed within the framework of the elasticity theory of dislocations and then verified by atomistic sim-
ulations. The results demonstrate that the spacing of dislocation arrays has to be taken into account for
the SFW variation besides the dislocation character. In addition, the SFW variation with the dislocation
spacing seems to be independent to temperature. Our approach can also provide a basis for the accurate
estimate of the influence of stacking faults on cross-slip, the competition between slip and twinning dur-
ing plastic deformations in face centered cubic metals.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Stacking faults (SFs) are usually formed by the dissociation of
perfect dislocations h1 1 0i/2 into two Shockley partials h1 1 2i/6
in face centered cubic (FCC) metals [1]. They often dominate the
behaviors of plastic deformations of these materials to a large
extent. For example, dislocations h1 1 0i/2 have to glide on the
plane {111} parallel to these SFs because of their restriction. If a
dislocation h1 1 0i/2 tends to cross slip, its SF have to shrink to a
minimum distance on the original glide plane to facilitate its re-
dissociation on the new glide plane [2,3]. This process plays an
important role in the onset of stage III work-hardening for single
crystals and the deformation textures of polycrystals [4]. Besides,
SFs significantly impact some more elementary processes, such
as synchronous improvement of strength and ductility [5–7], the
transition from slip to twinning of the dominant deformation
mode in FCC metals including transformation- and twinning-
induced plasticity alloys [8], the cracking behaviors of the coherent
twin boundary [9] and the formation of various configurations of
dislocations including persistent slip bands, labyrinth and cell
structures in cyclically deformed FCC metals [10]. In the quantita-
tive study of these phenomena, it is now recognized that the SF
width (SFW) is the most important factor that should be taken into
account when describing the influence of SFs on the mechanical
properties of FCC metals.

Numerous theoretical and experimental attempts [11–17] have
been undertaken to analyze the variation of the SFW (termed by d)
becauseof its importancementionedabove. Indissociationof an iso-
lated dislocation h1 1 0i/2 without any external loading, the elastic-
ity theory of dislocations successfully predicts that the SFW is
simply inversely proportional to the stacking fault energy (SFE
denoted by cI), and it is also a function of the orientation of a dislo-
cation line. These predictions have been confirmed in the accurate
measurement of SFW by the weak-beam technique of transmission
electron microscopy (TEM) [4,11,12]. On the other hand, when an
isolated dislocation h1 1 0i/2 is subjected to an applied loading, the
elasticity theory of dislocations demonstrates that the SFWdepends
on the external loading [13,17]. However Li et al. [16] found that the
equilibrium separation of partial dislocations in a wall of extended
edge dislocations is a function of the misfit angle of the wall. This
means that the dissociation of dislocation arrays or groups is differ-
ent from that of an isolated dislocation. Unfortunately, this model is
concentrated on symmetrical tilt boundaries in which each disloca-
tion has its own glide plane so that it is not valid to the common
experimentally observeddislocationarrays in associationwith cross
slip, dislocationmultiplications, dislocation pile-ups and so on [18–
26]. Because in the latter case all dislocations in each array should
glide on a single plane {111} and it is found that there usually exist
two sets of Shockley partial dislocations h1 1 2i/6 in each dislocation
array, which are formed by the dissociation of a single set of perfect
dislocations h1 1 0i/2. Therefore, it is meaningful to provide a quan-
titative description of the SFW variation for dislocation arrays.
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For this purpose, our task is two-fold: (i) to derive an analytical
equation to correlate the variation of the SFW d with the disloca-
tion spacing D (the d-D relation or equation hereafter) for different
dislocation arrays by applying the elasticity theory of dislocations,
and (ii) to perform systematical atomistic simulations to verify the
formulae in (i). In (ii), Cu and Ag are selected to conduct atomistic
simulations because of their large difference of SFE. At the same
time, different empirical potentials of Cu and Ag [27–31] are used
to consider the possible influences from the construction of poten-
tials on the simulation results. And the influence of temperature on
SFW is also discussed. Finally, the application and generality of the
d-D equation for different dislocation types, and its influence on
many behaviors of FCC metals during plastic deformations are dis-
cussed in detail.

2. Theoretical consideration

In this section, the isotropic elasticity theory of dislocations is
employed to derive the d-D relation. Fig. 1(a) sketches an array
of perfect dislocations with the Burgers vector b ¼ ½1 1 0�=2 on a
single glide plane. It represents a typical dislocation array gliding
on a single plane observed in the experiments [18–26]. We assume
that these dislocations in Fig. 1(a) can be placed into a coordinate
system {xyz}, where x is parallel to b (x||b), and z is parallel to the
normal of their glide plane (1 1 1). The dislocation line direction l is
restricted to the x-y glide plane, and it makes an angle hwith x. The
angle h is restricted in the range from 0 to 90�, because it suffices to
model the change from screw to edge dislocations (imagining b is
fixed along x). This coordinate system {xyz} will be also selected for
the atomistic simulations in the next section.

According to the isotropic elasticity theory of dislocations [1],
the stress tensor

Ps arising from a single dislocation b at the origin
in Fig. 1(a) has two non-zero components:
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Correspondingly, the stress tensor

Pa of the dislocation array in
Fig. 1(a) can be derived by superposing the stresses of each dislo-
cation in Eqs. (1) and (2) on the basis of Refs. [1,32,33] and its non-
zero components are:
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Note that all the stresses in the above equations are expressed
in {xyz} and A ¼ cosh Z � cosðX sin hþ Y cos hÞ;
X ¼ 2px=D; Y ¼ 2py=D; Z ¼ 2pz=D: In this work, G, b, m denote
the shear modulus, the length of the Burgers vector b, and the Pois-
son’s ratio, respectively.

The partial dislocation arrays b1 and b2 in Fig. 1(b) come from
the dissociation of the dislocation array b in Fig. 1(a). It is noted
that a translation occurs in the x-y plane associated with the dislo-
cation dissociation for each partial pair relative to their original
position before dissociation. This translation can be involved when
applying Eqs. (1)–(4) to the partial dislocations b1 and b2 by a sim-

ple coordinate transformation, e.g. Rs
b1

and Ra
b1

(or Rs
b2

and Ra
b2
) rep-

resent the stress tensors of an isolated dislocation and a dislocation
array with the Burgers vector b1 (or b2) by replacing x by
x ± dsinh/2 and y by y ± dcosh/2. In this case, the two partials b1
and b2 nearest to the origin are selected to establish the d-D rela-
tion. The stress tensor of these two partial dislocation arrays
excluding the selected two partials b1 and b2 nearest to the origin
can be easily derived as:

Rr ¼ Rr
b1

þ Rr
b2

ð5Þ

where
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Here the stress tensor Rr
b1

(or Rr
b2
) denotes the stress tensor of

the partial dislocation b1 (or b2) without the one nearest to the ori-
gin in Fig. 1(b). Besides the stress in Eq. (5), the interaction and SF

Fig. 1. (a) An array of perfect dislocations with the Burgers vector b. Their glide
plane is parallel to the x-y plane, in which the dislocation line direction l makes an
angle h with x. (b) Each perfect dislocation in (a) dissociates into two Shockley
partials b1 and b2. Only five dislocations are sketched for clarity. In (b), h = 90� is
selected as an example. See parameters in the text.

Fig. 2. Schematic presentation of simulated crystallite with M: region of mobile
atoms, P: regions where periodic boundaries are applied, F: lower fixed block and R:
upper rigid mobile block. See other parameters in the text.
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