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a b s t r a c t

The two-dimensional elastic phase-field simulation is applied to study the grain size effect on martensite
morphology with Fe–31at.%Ni alloy as the prototype material. Martensitic transformations containing
one or two variants are simulated in the single-crystal and poly-crystal models, and the morphologies
related to different models and their grain size dependences are displayed. The simulated results show
that the accommodation ability to the martensitic shape changes plays an important role in the grain size
effect of martensite morphology. Although the transformation strains in a grain can be relaxed to sur-
rounding grains, effective self-accommodations of different variants can only proceed in the individual
grain. The size of martensitic domains proportionally decreases with grain size reduction, due to harder
relaxation ability induced by the grain boundaries. The decreasing of the width for multi-variant domains
can be realized by decreasing the number of sub-domain variant plates without decreasing the width of
the plates.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Martensitic transformation (MT) still shows great importance in
scientific research nowadays, because it refers to the mechanical
properties and physical effects of new structural and functional
materials, such as TRIP [1] and TWIP [2] effects of advanced auto-
mobile steels, magnetic-field-induced shape memory effect of
shape memory alloys (SMAs) [3], high damping properties of
Mn-based alloys [4] and huge superelasticity of ferrous alloys [5].
MT is a shear-dominant, lattice-distortive and diffusionless trans-
formation occurring by nucleation and growth [6]. Internal stresses
are produced because of the crystal lattice misfit between austen-
ite and martensite. As the transformation-induced strain energy is
comparable with or even larger than the chemical energy reduc-
tion of MT [7], the strain energy dominates the kinetics of MT
and the martensite morphology [6]. MT usually produces several
crystallographically equivalent variants with different orientations
within an individual parent grain and the formation of self-
accommodated multi-variant microstructure is driven by elastic
energy reduction. The morphologies of martensite are different
from different materials [8], such as lath shape [9], lenticular shape
[10] and thin plate [11] in ferrous alloys. Complex microstructures
also exist, such as lath-block-packet hierarchical structure in steels

[12] and V-shaped morphology in NiTi alloy [13]. The evolution of
martensitic microstructure can be observed using in situ confocal
laser microscopy [14] and in situ scanning electron microscopy
[15].

Reducing the grain size (GS) can improve the mechanical prop-
erties of materials [16] and will influence the characteristics of MT
(e.g. MT start temperature [17]). In the meantime, the morphology
features of MT also change with GS reduction. The grain size effects
(GSEs) in lath martensitic steels have been deeply investigated
[16–19] by EBSD and the microstructure and strength model has
been established [12]. The experimental results show that with
the decreasing of GS, the sizes of the packet (laths with the same
habit plane) and block (laths of two specific variants group)
decrease, but the lath width changes only slightly. The lath size
is thought to be controlled by the Cottrell atmospheres and carbon
segregation [12]. The three-dimensional (3D) morphology of the
packets and blocks with different GSs can also be obtained by local
crystallographical analyses [20]. Ultra-grain refinement of austen-
ite makes the occurrence of multi-variant transformation difficult
and leads to the suppression of MT in metastable austenite [17].
The spatial restriction effect [16] was proposed, which explains
that several variants cannot be simultaneously formed due to
space shortage, and he mechanical stability of austenite is inde-
pendent of GS. Shibata et al. [21] found that the martensite plate
size decreases with decreasing the GS in lenticular martensitic
steel. Roca et al. [22] found a linear relationship between the aver-
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age plate width and GS in CuNiAl alloy, the interface energy den-
sity (act as transformation energy barrier) as a function of GS has
been assessed. Martensitic microstructure would influence the
mechanical properties, such as that the phase boundaries (lath
and block boundaries) are effective barriers for dislocation motion,
thus block boundary strengthening exists [12], and the transforma-
tion twin density has an effect on Hall–Petch relationship [23]. The
GSE in nanocrystalline SMAs was simulated using the Ginzburg–
Landau theory, which proposed that the inhibition effect of MT
in grain boundary regions also has a strong influence on MT inside
grains [24].

The phase-field microelasticity theory [25], which is based on
the Time-dependent Ginzburg–Landau (TDGL) phase transition
theory integrated with the Khachaturyan–Shatalov (KS) theory of
elastic energy, can be used to simulate the MT process and predict
the martensite morphology. The problem of transformation-
induced stress can be easily solved by the KS theory, according to
which the strain energy of an arbitrary coherent multiphase sys-
tem can be represented in a closed form for the homogeneous
modulus case [26]. Several phase-field models of MT have been
developed, such as the 3D single-crystal model [25], poly-crystal
model [27], external loading model [28], heterogeneous nucleation
model [7] and elastoplastic model [29].

In this paper, two-dimensional (2D) elastic phase-field models
are employed to study the GSEs on martensite morphology by
changing the GS of the simulated system. Although little effective
phase-filed model currently exists to simulate the lath martensite
in steels, the present 2D model can simulate the self-
accommodations of variants, and the stress relaxation changing
with GS is well considered. To systematically study the GSE in dif-
ferent materials, the single-variant (1V) and two-variant (2V)
transformations are simulated. The single-crystal (SC) and poly-
crystal (PC) models are used to investigate the effect of grain
boundary on MT and the stress relaxation feature in polycrystals.

2. Polycrystalline phase-field model of martensitic
transformation

The phase-field model used in this paper is based on the models
proposed by Wang et al. [25] and Artemev et al. [30]. As a popular
approach, similar models can be found in the literature [29,31,32].
An overview of this model is presented in this section.

For the phase-field model of MT, the structural order parame-
ters are required to simulate the structural change of a material
system. In the polycrystalline phase-field model, the number of
order parameters (g) is n �m where n is the number of variants
in an austenite grain and m the number of grains [29]. To simplify
the phase-field calculation, n equals 2 for the fcc-to-bcc MT in 2D
model. The total free energy of the system G, which is the function
of order parameters, is the sum of the chemical free energy, Gch, the
gradient energy Ggr and the elastic strain energy Gel, and is given by

G ¼ Gch þ Ggr þ Gel ð1Þ
The chemical energy is expressed as a Landau polynomial:
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where the coefficients are A = 32DG⁄, B = 3A � 12DGm and
C = 2A � 12DGm [33]. DG⁄ is the Gibbs energy barrier and DGm is
the free energy difference between the parent and martensite
phases, which is related with the undercooling:

DGm ¼ QðT � T0Þ=T0 ð3Þ

where Q is the latent heat for MT and T0 is the thermodynamic equi-
librium temperature.

The gradient energy relates to the interfacial energy and can be
expressed as:

Ggr ¼
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where b is the gradient energy coefficient.
The elastic energy is calculated by the micromechanical

approach as:
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where Cijkl is the elastic coefficient tensor and eelij the elastic strain
tensor. The transformation strain produced by MT is relaxed and
the distribution of the relaxed strain is given by solving the
mechanical equilibrium condition. According to the theory of
microelasticity, the elastic strain is defined as the difference
between the total strain, etij, and the total eigenstrain, e0ij, and is
expressed as:

eelij ¼ etij � e0ij ¼ �etij þ detij � e0ij ð6Þ
The total strain is defined as the sum of the homogeneous

strain, �etij, and the heterogeneous strain, detij. The eigenstrain is
the summation of transformation strain and defect strain, and
can be written as:
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where e000ij is the transformation strain of martensitic variant, Raij is
the rotation tensor of the grain a from the local to global coordinate
system, edeij is the defect strain. The polycrystal structure is
generated by the Voronoi tessellations under a periodical boundary
constraint, and the grains are randomly oriented [34]. Unlike other
works [32,35], we have no special treatment of the grain bound-
aries. To avoid the unphysical values of the order parameter driven
by strain energy reduction, k(gp(a)) is given by [32]:

kðgpðaÞÞ ¼
gpðaÞ ðwhen gpðaÞ P 0Þ
g2
pðaÞ ðwhen gpðaÞ < 0Þ

(
ð10Þ

�etij relates to the boundary conditions and is given as:

�etij ¼
�eij ðfor strain� controlled conditionÞ
Sijklrappl

kl þ �e0ij ðfor stress� controlled conditionÞ

(
ð11Þ

where �eij and rappl
kl are the given strain and stress conditions respec-

tively, Sijkl is the compliance coefficient tensor, and �e0ij is the homo-
geneous eigenstrain. The heterogeneous strain is given by solving
the mechanical equilibrium equation [29], as:

detij ¼
1

ð2pÞ2
Z
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where k indicates the reciprocal space vector, and e = k/|k| is the
unit vector along the k direction. XilðeÞ is the Green function tensor
inverse to the tensor X�1

il ðeÞ ¼ Cijklejek.
The time evolution of the order parameters is described by the

following TDGL equation:
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