
Grain size distribution under simultaneous grain boundary migration
and grain rotation in two dimensions

Selim Esedog�lu
Department of Mathematics, University of Michigan, United States

a r t i c l e i n f o

Article history:
Received 31 December 2015
Received in revised form 12 April 2016
Accepted 13 April 2016
Available online 15 May 2016

Keywords:
Grain boundary motion
Grain size distribution
Polycrystalline materials

a b s t r a c t

We explore the effects on grain size distribution of incorporating grain rotation into the curvature driven
grain boundary migration model of Mullins. A new, extremely streamlined and efficient algorithm allows
simulations with large numbers of grains. Some of these simulations yield size distributions and
microstructures close to those from recent, atomistic simulations of microstructural evolution using
the phase field crystal method that was shown to reproduce experimental size distributions observed
in fiber textured, nanocrystalline, thin metallic films.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Polycrystalline materials, such as most metals and ceramics, are
composed of many single crystal pieces of differing orientation
that are known as grains. The shapes and sizes of the grains are
well-known to have significant implications for the physical prop-
erties of a polycrystalline material, such as its yield strength and
conductivity. It is therefore of great practical interest to under-
stand how the sizes and shapes of grains change under common
manufacturing processes such as annealing. A well known model
for how the grains evolve during annealing was given by Mullins
[21]. It is a continuum description of the grain boundaries as a net-
work of surfaces that move via gradient flow to decrease a
weighted surface energy. Different versions of this model, often
with additional simplifying assumptions, have been studied
numerically using a variety of algorithms, such as kinetic Monte
Carlo, front tracking, phase field, level sets, and threshold dynam-
ics. Various statistics of grains, such as grain size distribution, grain
boundary character distribution, and distribution of the number of
neighbors are typically reported in these numerical studies.

In [2,3], an important discrepancy between the grain size distri-
bution (GSD) obtained from numerical simulations of Mullins’ con-
tinuummodel in 2D and that from experiments with fiber textured
nanocrystalline thin films is reported. In this setting, the crystallo-
graphic orientation of each grain is described by a single parame-
ter: the angle of rotation about the axis normal to the film. In the
reported experiments, grains range in size from 10 to 100 nm.
The eventual GSD observed differs considerably from that of

numerical simulations in having far more very small as well as very
large grains compared to the median.

Backofen et al. [1] carried out simulations of grain growth in
two dimensions using the phase field crystal (PFC) model [6]. This
is an atomistic model that appears to allow for simulations on time
scales beyond what is possible with other atomic scale strategies
such as molecular dynamics. As such, it is a promising new tool
for very detailed simulations of mesoscale features such as grain
boundaries. In [1], the authors report that the resulting GSD resem-
bles the experimentally observed one in [2,3] far more than the
distribution obtained from Mullins’ model. They suggest a number
of different mechanisms not captured by Mullins’ continuum
model that may be responsible for the more faithful reproduction
of experimental results by the PFC simulations. One of these mech-
anisms is grain rotation [10]. More recently, incorporating triple
junction drag into Mullins’ model has been shown in [23] to yield
GSDs resembling the experimental results of [2,3]. Despite being
overruled in [3], it thus appears that triple junction drag may be
at least partially responsible for the discrepancy in size
distribution.

A prominent feature of the results of [1] is that the shapes of the
grains in the PFC simulation appear to be quite different from the
very regular, almost polygonal grains seen in essentially all two
dimensional simulations of Mullins’ model (especially with equal
surface tensions), computed whether by phase field (e.g. [18]),
front tracking (e.g. [15]), or threshold dynamics (e.g. [7]) tech-
niques. In the images and videos of the PFC simulation provided
in [1], it is abundantly clear that grain rotation and other fine scale
dynamics such as the motion of dislocations frequently lead to
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elimination of certain grain boundaries resulting in coalescence
events that yield many grains with very eccentric, meandering
shapes. A natural question is whether elimination of some of the
very low energy grain boundaries through such processes may be
at least partially responsible in deforming the GSD towards the
one reported in [1]. In particular, our goal in this paper is to explore
whether grain rotation and coalescences, when incorporated into
Mullins’ continuum model, may explain the GSDs and unusual
microstructures seen in PFC simulations of [1].

To investigate these questions, we propose a new, very simple
model of grain rotation that is inspired by [20,26] and which turns
out to be quite similar to a model considered in [11,12,19]. Our
model can be seen as the natural multiphase version of the one
introduced in [26], which uses an additional phase field variable
to describe the orientations of grains in the network. This variable,
which is observed to be approximately piecewise constant, is part
of the gradient descent dynamics and leads to gradual variations in
the orientations of the grains as an additional dissipation mecha-
nism besides the geometric (curvature) flow of the grain bound-
aries. The numerical treatment of this very interesting model
appears to be quite challenging. Here, for our much simpler, mul-
tiphase version, we are able to give an extremely streamlined algo-
rithm by leveraging some of the recent advances in numerical
treatment of curvature motion in networks [9]. In fact, the basic
version of the algorithm can be implemented in literally a few lines
of Matlab code; a slightly more sophisticated version allows us to
carry out large scale simulations that probe the effects of grain
rotation and coalescence on the GSD in Mullins’ model.

2. Our model and algorithm

Let Rj � Rd denote the space occupied by the j-th grain in the
microstructure. Although the algorithms discussed below work in
any dimension and for more general energies, in this study we
focus on the two dimensional version of Mullins’ model for which
the energy of the grain network is given byX
i<j

rðhi; hjÞLengthðCi;jÞ ð1Þ

where Ci;j ¼ @Ri \ @Rj denotes the boundary between the i-th and
j-th grains. In particular, we will neglect normal dependence of the
energy density. The surface tension factor r is chosen in accordance
with the Read–Shockley model [22] along with a Brandon angle [4]
that will be denoted h�, often taken to be between 15� and 30�:

rðn;gÞ ¼ min
k¼1;2;3;...

f n� gþ kp
4
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����

� �
ð2Þ

where

f ðhÞ ¼
h
h�

1� log h
h�

� �� �
if h 2 ½0; h��

1 if h > h�:

(
ð3Þ

According to Mullins, the dynamics associated with energy (1)
is given by L2 gradient descent for the interfaces, leading to the
normal speed

v i;j ¼ li;jrðhi; hjÞji;j ð4Þ
for interface Ci;j. Here ji;j denotes the mean curvature of Ci;j, and
li;j > 0 is a mobility factor. Along triple junctions formed by the
meeting of three distinct grains Ri, Rj, and Rk, Herring angle condi-
tions [13] hold:

rðhi; hjÞni;j þ rðhj; hkÞnj;k þ rðhk; hiÞnk;i ¼ 0 ð5Þ
so that angles formed by normals ni;j; nj;k, and nk;i to the three inter-
faces Ci;j; Cj;k, and Ck;i along the triple junction are determined by

their associated surface tensions. As we have ignored normal
dependence of surface tensions in (1), torque terms to not appear
in (5); in this simpler form, the angle conditions are also known
as Young’s law.

The algorithms used in this study are obtained from a non-local
approximation to energy (1): These approximate energies are
given by

1ffiffiffiffiffi
dt

p
X
i<j

rðhi; hjÞ
Z
Ri

Gdt � 1Rj
dx ð6Þ

where Gt denotes the Gaussian kernel in two dimensions

GtðxÞ ¼ 1
4pt

exp � jxj2
4t

 !
ð7Þ

and 1RðxÞ for a set R denotes its characteristic function:

1RðxÞ ¼
1 if x 2 R;

0 otherwise:

�

The width dt of the Gaussian kernel appearing in (6) ends up
playing the role of the time step size for our scheme, described
below, that approximates gradient descent of (1) in L2 sense, as
prescribed by [21]. Energy (6) has been proposed in [9] and has
been shown to converge in a very precise sense (namely, that of
Gamma convergence) to energy (1) in the limit dt ! 0þ. Intuitively,
we have

1ffiffiffiffiffi
dt

p
Z
Ri

Gdt � 1Rj
dx � LengthðCi;jÞ

since the function 1ffiffiffi
dt

p 1Ri
Gdt � 1Rj

approximates a delta function con-

centrating near Ci;j as d ! 0. The reason for our interest in this
specific – perhaps unusual – approximation of Mullins’ energy is
that it generates exceptionally simple and efficient algorithms for
simulating the gradient descent dynamics associated with (1).
Indeed, it has been shown in [9] to lead in a systematic way to
the correct multiphase, arbitrary surface tension analogue of a very
fast algorithm known as threshold dynamics that was originally pro-
posed in [16,17] for networks with all equal surface tensions (i.e.
rðhi; hjÞ ¼ 1 for all i and j). Let us recall the simplest version of the
generalization of threshold dynamics to arbitrary surface tensions
given in [9]:

Given the initial grain shapes R0
i and orientations hi and a

time step size dt, obtain the grain shapes Rnþ1
i at the

ðnþ 1Þ-th time step from the grain shapes Rn
i at the end of

the n-th time step as follows:

1. Compute the convolutions:

/n
i ¼ Gdt � 1Rn

i
: ð8Þ

2. Form the comparison functions:

wn
i ¼

X
j–i

rðhi; hjÞ/n
j : ð9Þ

3. Update the grain shapes:

Rnþ1
i ¼ x : wn

i ðxÞ < min
j–i

wn
j ðxÞ

� 	
: ð10Þ

Benefits of Algorithm (8)–(10) include its unconditional stabil-
ity (time step size dt can be chosen arbitrarily large, constrained
only by accuracy considerations), seamless handling of topological
changes in any dimension (the algorithm is the very same three
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