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a b s t r a c t

This article discusses a general method for constructing interatomic potentials based on truncated Taylor
series expansion. Specifically, it addresses the scope of application of the method, and demonstrates its
practical importance in capturing anharmonicity for a Lennard–Jones solid. In particular, the third-order
terms in the truncated potential are shown to accurately approximate the thermal conductivity of the
standard interaction Lennard–Jones potential. The paper also describes an efficient algorithm for locating
the equilibrium lattice site of an atom in a three-dimensional crystal lattice displaced from its equilib-
rium position.

Published by Elsevier B.V.

1. Introduction

Molecular Dynamics (MD) is an invaluable computational tool
for the bridging of real- and phonon-space analysis techniques. A
key advantage of MD over conventional lattice dynamics methods
is that it allows for the natural inclusion of anharmonic effects,
which are crucial in estimating most thermophysical properties
[1].

The application of MD to the quantitative analysis of material
response and properties is predicated upon the availability of accu-
rate and efficient potentials. In principle, such potentials are
intended to represent interatomic interactions between charged
atomic particles. While ab initio MD is possible, its scope is extre-
mely limited due to its prohibitive computational cost. Moreover,
potential energy surfaces, which are solutions of the electronic
Schrödinger equation within the Born–Oppenheimer approxima-
tion, are not readily available for most interesting systems. For this
reason, one typically relies on a coarse empirical approximation to
the true quantum-mechanical potential. Ideally, empirical poten-
tials should have a simple functional form to speed up the evalua-
tion of the forces acting on an atom and also be transferable to

many systems under different loading conditions. Thus, designing
a general empirical interatomic potential that approximates the
actual (unknown) solution of the Schrödinger equation is a
challenging task. In practice, the choice of functional form and
parameters is often based on fitting to available experimental data
(e.g., equilibrium geometry of stable phases, cohesive energy, elas-
tic moduli, vibrational frequencies, temperatures of the phase tran-
sitions, etc.). Unsurprisingly, a potential that is tailored to one set of
experimental data for a given material does not necessarily predict
with accuracy the response of the same material beyond the nar-
row scope of this data. For example, if a potential has been
designed to reproduce mechanical properties, such as the experi-
mental values of the lattice constant and elastic constants for a
crystal phase, one should not expect it to accurately predict ther-
mal transport properties [2].

Recent analytical work has introduced a general method of con-
structing interatomic potentials based on a truncated Taylor series
expansion of the (unknown) potential function of the crystal to a
given order [3,4]. The coefficients in the Taylor series may be
obtained from a given interatomic potential or through ab initio
methods, e.g., Density Functional Theory (DFT) calculations. The
latter enables the use of interatomic potentials of ab initio accuracy
for MD simulations, thereby removing one of the major limitations
of classical MD, that is, the dependence on purely empirical
potentials.
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While past work [3,4] focused on the application of the method
of truncated Taylor series potential, it did not include any informa-
tion on the conditions under which this method is applicable. Fur-
ther, it is not clear how many terms in the Taylor series expansion
are required to accurately estimate thermophysical properties of
crystal lattices, such as heat capacity and thermal conductivity,
the latter of which depends strongly on the degree of anharmonic-
ity of the potential energy. This is particularly important because
inclusion of higher-order terms becomes computationally expen-
sive in terms of storage of force constants. In addition, calculating
these higher-order force constants for real materials using an ab ini-
tio method such as DFT is extremely challenging. As a result, most
DFT-based methods are currently limited to computation of terms
up to the third-order in the Taylor series expansion.

This article expands on the previous work by addressing the
range of applicability of the truncated Taylor series expansion
method. It also demonstrates the effectiveness of this method in
yielding accurate estimates of equilibrium properties such as heat
capacity as well as transport properties such as thermal conductiv-
ity. The latter affirms the sufficiency of the third-order terms in
representing the anharmonicity of crystal lattices, thereby clarify-
ing the importance of the third-order terms in relation to higher-
order terms in the potential energy expression of solid crystals.
For simplicity, the method is illustrated for an ideal Lennard–Jones
(LJ) crystal, as the closed functional form of an LJ solid allows for an
accurate determination of the error incurred in the estimation of
thermophysical properties by approximating the potential energy
with a truncated Taylor series. It must be noted that the predictive
capacity of this method is not limited to materials whose potential
is explicitly known. Indeed, the real utility of this method is in
enabling the use of interatomic potentials of ab initio accuracy to
make more accurate predictions of thermophysical properties for
a range of temperatures.

The article is organized as follows: Section 2 includes an intro-
duction of the fundamental concepts of the truncated Taylor series
technique and addresses the conditions under which it may be
applied. It also includes a section on the appropriate statistical
mechanical expressions for stress and heat flux to be used with
the truncated Taylor series potential. Details on the implementa-
tion of the method for the case of a Lennard–Jones (LJ) crystal
are presented in Section 3. This is followed in Section 4 by a discus-
sion of implementation and a comparison of specific heat and ther-
mal conductivity values using this method and a classical LJ
potential. Concluding remarks are offered in Section 6.

2. Theory

2.1. Background on interatomic potentials

In any crystal at finite temperature, the atoms undergo small-
amplitude vibrations about their equilibrium lattice positions. This
allows the potential energy U to be expanded in a Taylor series
about its equilibrium value U0 in terms of the displacements of
the atoms from their equilibrium positions, in the form
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Here, u denotes the atomic displacement, i; j; k label the different
atoms and a; b; c denote the Cartesian directions. In addition, the
force constants (FCs) Pa

i ;U
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ijk denote respectively the first, sec-

ond and third partial derivatives of U with respect to the displace-
ments evaluated in the equilibrium configuration. Without loss of
generality, the constant term U0 may be set to 0 by adjusting the

reference level of the potential energy. Furthermore, Pa
i ¼ 0 since

the equilibrium configuration corresponds to a minimum of the
potential energy, Therefore, Eq. (1) may be reduced to
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The components Fai of the total force acting on atom i may be
obtained from Eq. (2) as
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For simple systems (e.g., an LJ crystal) the FCs may be calculated
analytically. However, for many realistic systems, where highly
accurate interatomic potentials are not known, ab initio methods
based on DFT may be employed to compute the FCs in Eq. (3). In
this manner, one may, in principle, construct interatomic poten-
tials of ab initio accuracy up to any given order.

2.2. Range of validity

Classical MD simulations are meaningful when the temperature
is high enough to render the classical Maxwell–Boltzmann distri-
bution of atomic velocities a good approximation to the corre-
sponding quantum statistical distribution. This is the case when
the temperature is at least in the range of the Debye temperature
of the material [5, Chapter 23].

For the purpose of accurately estimating many thermophysical
properties of materials, including transport properties such as
thermal conductivity, it is sufficient to include the effect of anhar-
monicity of the potential and truncate the Taylor series in Eq. (2) at
the third order [4], as discussed in the Introduction. This truncation
is predicated on the assumption that the displacement u of the
atoms about their equilibrium positions is ‘‘small” in the sense that

max
i;j

ðjjuijj; jjujjjÞ � jjRj � Rijj � jjRijjj; ð4Þ

for all pairs of atoms ði; jÞ with equilibrium positions Ri and Rj. This
truncation also serves the purpose of limiting the computational
expense of the resulting MD simulations. For solids, condition (4)
is typically satisfied unless the temperature is close to the melting
point.

The precise meaning of the inequality condition (4) may be
articulated as follows: the temperature of the solid must remain
low enough so that no atom displaces so far away from its equilib-
rium position that the resultant force on it is directed away
from that position. Fig. 1 illustrates, for the simple case of a
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Fig. 1. Schematic depiction of a pure harmonic and anharmonic potentials derived
from Taylor series expansion of a general crystal potential energy.
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