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a b s t r a c t

This paper presents a refinement to the existing nucleation algorithm for a coupled conserved–
nonconserved phase field model. In the newmethod, which offers greater ease of implementation as com-
pared to the existing approach, only the nonconserved order parameter is modified to seed supercritical
nuclei (thus termed order-parameter-only seeding). The order-parameter-only seeding method naturally
satisfies the conservation law for the conserved order parameter. In addition, the implementation within a
finite element framework is described. The evolution of a single nucleus is examined to ensure that the
precipitate growth kinetics are not affected by the seeding method. We find that, after a brief initial tran-
sient period, order-parameter-only nucleation yields similar precipitate growth characteristics to that of
the existing model. The kinetics of a phase transformation exhibiting concurrent nucleation and growth is
analyzed in the form of the Avrami equation, and a statistical analysis is performed to determine if mesh
and/or time adaptivity affects the simulation results. The statistical analysis indicates that the nucleation
algorithm is amenable to adaptive meshing and adaptive time stepping.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nucleation and growth are key phenomena in phase transfor-
mations such as solidification and solid–solid precipitation. Nucle-
ation behavior can have a major impact on the resulting
microstructure and material properties. For example, precipitation
hardening of alloys involves the formation of second-phase parti-
cles. The mechanical properties of such materials are dependent
on precipitate size and spatial distribution; these characteristics
are controlled in part by the nucleation behavior [1]. Thus, model-
ing of nucleation and growth is of major technological and scien-
tific importance for materials development and design [2,3]. One
means of modeling microstructural evolution is the phase field
approach, which has been successfully employed to simulate phase
transformations such as spinodal decomposition [4–7], coarsening
[8–12], solidification [13–15], and thin film growth [6,16–19].
Comprehensive descriptions and reviews of phase field modeling
are found in Refs. [20–24].

In a phase field model, the microstructure is described by one or
more continuous conserved or nonconserved field variables, ter-
med order parameters. An order parameter is generally denoted
as /ðr; tÞ and indicates the phase at r, where r is position and t is

time. Each phase is designated by a bulk value (e.g., / ¼ 1 for the
a phase and / ¼ 0 for the b phase), and the value of / changes
smoothly between phases to yield a diffuse interface that has a
finite width. The position of the interface between the phases is
described by an intermediate value (e.g., / ¼ 0:5). Thus, the phase
field methodology eliminates the need to track interface positions
explicitly. The free energy of the system is described as a functional
of the order parameters, and the evolution of the system is driven
by the reduction of the free energy.

Nucleation is commonly handled in one of two approaches
within a phase field model [20], though other approaches exist
as well. In the first method, a random noise term satisfying the
fluctuation–dissipation theorem is added to the time evolution
equation to model atomic-scale thermal fluctuations, giving rise
to homogeneous nucleation [25]. However, the spatial and tempo-
ral resolutions required to accurately describe these fluctuations
are computationally prohibitive with existing resources except
for when modeling extremely small volumes. In practice, unphys-
ically large random noise is often used in the early stage of a sim-
ulation to induce the formation of second-phase particles. After
their formation, the noise is deactivated and growth of the parti-
cles ensues [25–27]. Similarly, heterogeneous nucleation on
microstructural defects and walls has been modeled by the use
of white- and colored-noise terms in the evolution equation [28].
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An alternative to the aforementioned noise-based methods is
explicit introduction of nuclei into the phase field simulation. In
this method, classical nucleation theory is applied to a phase field
model described by coupled conserved–nonconserved order
parameters [29]. The local nucleation probability for each
discretized volume in the simulation is calculated as a function
of the local nucleation rate, and nucleation occurs stochastically
as a function of the local nucleation probability. If nucleation
occurs, a supercritical nucleus is introduced into the simulation
by changing the value of the local composition field. To satisfy
mass conservation, a depletion region around the nucleus must
be created in the composition field. The algorithm was initially
implemented with a depletion region described by a discontinuous
concentration profile [29]. In subsequent work, a depletion region
profile derived from the Zener gradient approximation [30] was
demonstrated. This method was further modified by introducing
a diffusion smoothing step after nucleus introduction [31] to create
a smooth composition gradient at the nucleus/matrix interface.

Several other phase field treatments of nucleation exist in addi-
tion to the two aforementioned approaches. Microscopic phase
field formulations of heterogeneous nucleation on defects were
developed, in which the energy of a defect, such as a dislocation,
is added into the local free energy to induce nucleation on the
defect [32,33]. In addition, several methods have been developed
to numerically determine the critical nucleus shape. In one
approach, the critical nucleus profile under solidification condi-
tions was determined by finding the time-independent solutions
of the phase field evolution equations for a given concentration
[34]. To obtain the shapes of critical nuclei in solid–solid phase
transformations, which could deviate from a spherical shape due
to elastic effects, both the nudged elastic band method [35] and
the minimax technique [36–38] have been utilized.

In this paper, a refinement to the existing nucleation algorithm
for a coupled conserved–nonconserved phase field model is
presented. In the new method, only the nonconserved order
parameter is modified to seed supercritical nuclei (thus termed
order-parameter-only, or OPO, seeding). The OPO seeding
method is easier to implement than the original method
[29,30,39] and naturally satisfies the conservation law for
the conserved order parameter. The implementation within a finite
element framework is described, and the evolution of a single
nucleus is discussed. The kinetics of a phase transformation
exhibiting concurrent nucleation and growth is analyzed in the
form of the Avrami equation, and a statistical analysis is performed
to determine if mesh and/or time adaptivity affects the simulation
results. While the implementation was performed within a
finite element framework, the method may be used with other
numerical methods such as the finite difference method.

2. Methods

2.1. Phase field model

The proposed OPO seeding method relies on the coupling
between a conserved order parameter and a nonconserved order
parameter through the free energy. Although OPO seeding can be
implemented into any coupled conserved–nonconserved phase
field model, a model describing the zirconium/zirconium hydride
system [40] is adopted to demonstrate the approach. The zirco-
nium/zirconium hydride system is described using a conserved
field variable, c, that represents the concentration of hydrogen,
and a nonconserved structural order parameter, g, that distin-
guishes the different structures of the two phases, where g ¼ 0
for zirconium and g ¼ 1:5 for the hydride. To demonstrate the
nucleation algorithm, the free energy functional from Ref. [40] is
simplified by neglecting elastic energy and by retaining only one

structural order parameter corresponding to one of the three
equivalent orientation variants. The free energy is given as
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where jc is the gradient energy coefficient for concentration, jg is
the gradient energy coefficient for the structural order parameter,
f chem is the bulk chemical free energy density, and V is the volume.
The expression for f chem used in this work is
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where c1; c2; Ai i ¼ 1; . . . ;4ð Þ are constants. The values of c1 and c2
are the equilibrium concentrations of hydrogen in the matrix and
hydride, respectively, while the Ai’s control the shape of the free
energy surface [40].

The microstructural evolution of the system is governed by cou-
pled conserved–nonconserved dynamics. The Cahn–Hilliard equa-
tion [7] governs the evolution of the concentration of hydrogen as

@c
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¼ r � Mrl½ �; ð3Þ

where the chemical potential, l, is

l ¼ @f chem
@c

� jcr2c; ð4Þ

t is the time, and M is the mobility of hydrogen. In addition, the
Allen–Cahn equation [41] governs the evolution of the noncon-
served structural order parameter as
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where L is the kinetic coefficient. Both the mobility and the
kinetic coefficient are assumed to be isotropic. Following Ref. [40],
we use L ¼ M ¼ 0:4; A1 ¼ 18:5; A2 ¼ �8:5; A3 ¼ 11:5; A4 ¼ 4:5,
jc ¼ jg ¼ 1:5; c1 ¼ 0:006, and c2 ¼ 0:59 in nondimensionalized
units. Nondimensionalization of the governing equations is found
in Appendix A.

2.2. Explicit nucleation algorithm

Simmons et al. pioneered the development of an algorithm that
explicitly introduces nuclei in a phase field simulation based on
classical nucleation theory [29]. Hereafter, this method will be
referred to as the explicit nucleation algorithm. The concepts from
that algorithm that are incorporated into our model are summa-
rized in this section. The local nucleation rate for critical nuclei,
J� r; tð Þ, is calculated following classical nucleation theory [42] as
[29]

J� r; tð Þ ¼ ZNb� exp
�DG�

kBT

� �
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t

� �
; ð6Þ

where Z is the Zeldovich correction factor, N is the number of atoms
in the element, b� is the frequency at which a critical nucleus
becomes supercritical, T is the temperature, kB is the Boltzmann
constant, s is the incubation time, and DG� is the critical nucleus
activation energy. For a given volume, the nucleation rate is then
given by

J� r; tð Þ ¼ ZnDvb� exp
�DG�

kBT
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where N ¼ nDv; n is the number density of atoms and Dv is the
volume of the element. Following Ref. [29], Eq. (6) is simplified to

J� r; tð Þ ¼ k1 exp
�k2
Dc

� �
; ð8Þ
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