
Editor’s Choice

Three-dimensional mesoscopic modeling of equiaxed dendritic
solidification of a binary alloy

Youssef Souhar a,⇑, Valerio F. De Felice a, Christoph Beckermann b, Hervé Combeau a,
Miha Založnik a
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a b s t r a c t

The mesoscopic envelope model is a recent multiscale model that is intended to bridge the gap between
purely microscopic and macroscopic approaches for the study of dendritic solidification. It consists of the
description of a dendritic grain by an envelope that links the active dendrite branches. The envelope
growth is deduced from an analytical microscopic model of the dendrite tip growth kinetics matched
to the numerical solution of the mesoscopic solute concentration field in the vicinity of the envelope.
The branched dendritic structure inside the envelope is described in a volume-averaged sense by phase
fractions and averaged solute concentrations. We present a careful quantitative analysis of the influence
of numerical and model parameters on the accuracy of the model predictions. We further perform a val-
idation study through comparisons of 3D simulations to experimental scaling laws giving the shape and
the internal solid fraction of freely growing binary alloy dendrites and to analytical solutions for the pri-
mary dendrite tip speed. We provide generally valid guidelines for the calibration of the mesoscopic
model, enabling reliable control of the accuracy of model predictions over a wide range of undercoolings.
The model is applied to simulate strong solutal interactions in large ensembles of equiaxed grains. The
potential for mesoscopic simulations to provide refined modeling of microstructures in volume-
averaged macroscopic models via scale bridging is demonstrated.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dendritic (treelike) crystals or grains are the most common
growth form in solidification of metal alloys. Their growth is gov-
erned by an intricate interplay between diffusion or convection
of heat and chemical species (solutes) and capillary effects. Fur-
thermore, in castings the growth of dendritic crystals is influenced
by adjacent grains. The grains can ‘‘feel” each other due to the over-
lap of thermal and solutal fields surrounding each growing grain.
Analytical solutions of dendritic growth are limited to the descrip-
tion of a single isolated dendrite tip that grows by diffusion in an
infinite, uniformly undercooled melt [1,2].

Complex dendritic structures can be simulated directly by
phase-field methods, which directly resolve the dendritic structure
in detail but are computationally expensive. These and other
microscopic methods thrived and matured in the last decade [3–
5]. Phase-fields methods have become the most common approach

to the numerical simulation of dendrite growth. However, because
phase-field methods need a very fine mesh, computing and mem-
ory requirements are large. Most simulations are limited to the
scale of a few dendrites, to two dimensions and purely diffusive
conditions. Only recently simulations of large ensembles of grains
in 3D have been reported [6,7]. They required complex high-
performance parallel computing algorithms and massive super-
computing resources.

Other common approaches are cellular-automaton and volume-
averaged models [8–13] that can simulate the growth of multiple
dendrites on the scale of an entire casting but at the expense of
simplifications. These methods are not able to predict accurate
grain shapes and rely on very approximate relations for modeling
grain interactions.

A simulation tool for dendritic solidification that is intended to
bridge the gap between purely microscopic and macroscopic
approaches is given by the so-called mesoscopic solidification
model of Steinbach, Beckermann and coworkers [14–16]. This
model relies on the description of a dendritic grain by its envelope,
which is a smooth surface connecting all of the actively growing
dendrite tips. An example of interacting three-dimensional
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equiaxed dendritic grain envelopes predicted by the mesoscopic
model is shown in Fig. 1. The driving force for the envelope growth
is obtained as a function of the temperature or solute concentra-
tion in the liquid at a certain distance ahead of the envelope. As
shown in Fig. 2, this distance is denoted as the stagnant film thick-
ness d and is the principal model parameter. This model has been
shown to provide physically realistic results for both equiaxed
[14,15] and columnar [16,17] dendritic growth.

Steinbach et al. [14] applied the mesoscopic model to the ther-
mally driven growth of dendritic grains into a supercooled melt of
a pure substance. They validated the predictions of the model for
the case of a single grain growing into an essentially infinite melt
through comparisons with previously obtained scaling laws for
the grain envelope shape and the internal solid fraction, derived
from microgravity experimental data [19–22]. Later they investi-
gated the transient interactions between equiaxed grains of a pure
substance and validated some of their results with phase-field cal-
culations [15]. More recently, Delaleau et al. [16] extended the
mesoscopic model to the solidification of a binary alloy with a pre-
scribed temperature field. They applied the model to simulate the
columnar dendritic microstructures observed in in situ synchrotron
X-ray imaging experiments [23,24]. Relatively good agreement
was found between the predicted and measured dendrite envelope
shapes, solid fractions and solute concentration fields.

These studies have shown the potential of the mesoscopic
model for accurate prediction of dendrite envelope shapes and

grain interactions at a computational cost that is up to several
orders of magnitude smaller than that of phase-field methods
[17]. An interesting future application of this model is the upscal-
ing from mesoscopic simulations to volume-averaged macroscopic
models, in order to provide laws of microstructure growth dynam-
ics that account for interactions in large ensembles of grains. This
can be done, for example, by simulations of large ensembles of
grains across wide parameter ranges and by subsequent averaging
of these simulations. However, on the way to such a wide applica-
tion of this model, a comprehensive investigation of the accuracy
of the model predictions, particularly of the dependence of the
simulations on the model and numerical parameters, is still neces-
sary. This has not been systematically addressed in previous stud-
ies. In the present paper we perform a careful quantitative analysis
of the influence of numerical and model parameters on the accu-
racy of the model predictions. We also validate the model for free
dendritic growth in a binary alloy over a wide range of undercool-
ings. This is accomplished through comparisons of 3D simulations
to recently published experimental scaling laws giving the shape
and the internal solid fraction of freely growing binary alloy den-
drites [18] and to classical analytical solutions for the primary den-
drite tip speed. We provide generally valid guidelines for the
calibration of the numerical and model parameters of the meso-
scopic model, enabling reliable control of the accuracy of model
predictions over a wide range of undercoolings. Finally, we apply
the model to large ensembles of equiaxed grains growing in the

Nomenclature

Greek Letters
C Gibbs–Thomson coefficient
d stagnant film thickness (distance between the envelope

and the confocal envelope)
denv distance to the envelope
dl volume-averaged diffusion length at the envelope
h angle between the envelope normal and the tip growth

direction
r� tip selection parameter
s dimensionless time scaled by Dl=V

2
LGK

sd dimensionless time of departure from free growth
sWmin dimensionless time of minimum sphericity
/ phase indicator field
W average envelope sphericity
X supersaturation
X0 initial supersaturation
Xd supersaturation at the confocal envelope
X1 supersaturation at infinity

Latin letters
A1; A2 amplification factors in the dendrite scaling laws
b; blim stabilization parameter and its stability limit
C solute concentration
hClie average solute concentration in the extradendritic liq-

uid
Co/ courant number of the phase indicator field
D solute diffusion coefficient
d0 capillary length
dcc mean distance between grain centers
F projection area of the solid phase
FoDx grid Fourier number
g volume fraction
kp equilibrium solute partition coefficient

ldiff theoretical (LGK) solutal diffusion length at the primary
tip at the initial supersaturation

mL slope of the liquidus line
n1; n2 exponents in the dendrite scaling laws
~n outward drawn normal of the envelope surface
Nldiff

V dimensionless grain density
Pe Péclet number
R radius
SV ;env volume averaged specific envelope surface area
T temperature
Tf melting temperature of the pure solvent
t time
V ; ~V speed, velocity
W characteristic width of the hyperbolic-tangent profile
Xact width of the envelope formed by active sidebranches
~xd position of the confocal envelope point
x; y; z cartesian coordinates
Dx; Dt grid spacing, timestep

Subscripts
e envelope
env envelope surface
LGK theoretical LGK primary dendrite tip
l liquid phase
s solid phase
tip dendrite tip

Superscripts
⁄ solid–liquid interface
� dimensionless quantity

Special functions
Iv Ivantsov function: Iv Peð Þ ¼ Pe exp Peð ÞE1 Peð Þ
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