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Desired material synthesis and design can be directly predicted on the basis of first principle calculations
and machine learning. Material big data is constructed based on density functional theory where every
possible element combinations are considered and then used as training sets for support vector
machines. The predicted material properties for common materials are successfully matched with exper-

imental data. In addition, material combinations based on desired material properties are also able to be
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predicted. Thus, the proposed work flow becomes the bridge between the material database and design-
ing materials. The approach enables efficient material mining from material big data and could poten-
tially reveal undiscovered desired materials. This approach could also potentially enable targeted
material mining from material big data, the unveiling of undiscovered desired materials, and the execu-
tion of targeted material synthesis in experiment.

© 2015 Elsevier B.V. All rights reserved.

Mining desired materials directly from the periodic table is the
ultimate goal for material scientists. The complexity of designing
materials in such a manner rests upon the extremely large number
of possible combinations of elements where different crystal struc-
tures for each combination must be also accounted for. Such com-
plexities of combinations of elements make scientists struggle to
dig such a gold mine in experiment. The rise of first principle cal-
culations based on quantum mechanical techniques takes a promi-
nent place in computational material science with the help of
supercomputers [1]. The movement towards creating a material
database using simulation opens a new way of seeking and design-
ing new materials [2-5]. Such movement is also occurring in the
field of catalysts where desired chemical reactions are evaluated
using first principle calculations [6,7]. With the rapid increase of
supercomputer development, creating material databases using
first principle calculations is gaining popularity, yet accessing
and manipulating the data for predicting new undiscovered mate-
rials has yet to be realized. In other words, the creation of material
databases has been limited to materials that have already been dis-
covered and thus have not been used to their full potential.

Here, density functional theory and machine learning tech-
niques are implemented for the creation of material databases
and material predictions. In particular, support vector machines
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within machine learning is implemented in order to fill gaps
between the material database and material design. Support vector
machine is a particularly successful technique for recognizing
patterns where it learns categorized data sets through so called
training and reveals the overarching trends in the data set [8].
The trained support vector machine from material database is then
applied towards searching and predicting desired material proper-
ties and material combinations that possess the desired material
properties.

Desired materials can be directly mined from the periodic table
with the aid of first principle calculations and machine learning,
where the former provides the means of calculating big data and
the latter predicts element combinations based on desired proper-
ties. Machine learning plays a particularly important role due to its
ability to learn behaviors and trends present within the periodic
table and make predictions based off the learned trends. The pro-
posed outline shown in Fig. 1 demonstrates how material design
and prediction can be achieved from elements in the periodic table.
The periodic table is treated as an element pool where the individ-
ual elements act as building blocks for the modeling process. All
possible combinations, including unrealistic cases, are constructed
where different concentrations of elements and crystal structures
are accounted for. First principle calculations are performed for
each constructed model in order to acquire data on properties such
as lattice constant, densities, formation energies, magnetic
moment, and bulk modulus. The created database then becomes
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Fig. 1. Proposed work flow of material synthesis and design from first principle
calculations and machine learning.

the training data for support vector machines where various sup-
port vector machines are created depending on the material prop-
erties and material combinations. Material properties and material
selection are predicted using the trained support vector machine
based off the parameters put in by the inquirer. Based on the
results, several predicted materials are tested and attempted to
be synthesized in experimental settings. Synthesis of the desired
material is then performed based on the results of the experimen-
tal investigation.

The material database in this work is created using the grid-
based projector-augmented wave (GPAW) method within the den-
sity functional theory [9]. Grid spacing is set to 0.10 A and 0.1 eV of
smearing is applied. The exchange correlation of PBE exchange
(PBE) and spin polarization calculations are implemented [10].
4 x 4 x 4 special k points of the Brillouin zone sampling is used
within periodic boundary condition [11].

Support vector machine classification within scikit-learn is
implemented for predicting the material properties and material
combination [12]. Radial basis function kernel is used for kernel
function and kernel coefficient is set to 0. Weight of classification
is adjusted based on class frequencies and shrinking heuristic is
also applied. Thus, support vector machine classification in this
work is set to train the series of data containing multiple features
and classes. Once the support vector machine is trained, it can pre-
dict the class based on user input.

The first database, Database 1, is created using Fe as the fixed
element and the ratio of Fe and the variable element X is kept at
1:1 where X is every element of the periodic table with atomic
numbers 1-57 and 72-83. The number of samples for Database 1
is 202. The calculated material properties and non-calculated fea-
tures of all possible Fe + X combinations with body centered cubic
(BCC), face centered cubic (FCC), and hexagonal close packed (HCP)
structures are stored within the database. By organizing the data in
this manner, the support vector machine can understand trends
and behaviors of the materials based on their structures. In partic-
ular, Fig. 2(a) plots two features (in this case, lattice constant and
formation energies) from the created database where it shows that
each value is grouped according to their crystal structure. The fig-
ure demonstrates trends in behavior according to crystal structure,
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Fig. 2. (a) Lattice constant (A) and formation of energy (eV) of Fe and all elements in
the periodic table with atomic numbers within the range of 1-57 and 72-83 and
with FCC, BCC, and HCP crystal structures. Note that the lattice constant of (a) is
taken in the case of HCP. (b) Lattice constant (A) and bulk modulus (GPa) of X +Y
where X and Y are all elements in the periodic table with atomic numbers within
the range of 1-57 and 72-83 and with BCC crystal structures. The color bar
indicates the atomic number of the element in Y. Please see Supporting Information
for raw data used for these figures. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

enabling the support vector machine to learn these trends in
behavior. In the same fashion, increasing the number of features
allows for a more accurate categorization within high dimensional
features.

Separate support vector machines are created for each individ-
ual material property. In particular, five support vector machines
are created for crystal structure, lattice constant, formation energy,
magnetic moment, and bulk modulus. When creating a support
vector machine, data from Database 1 is separated into training
data and the target group which represents a particular material
property. For instance, a support vector machine for lattice con-
stant uses data such as element name, magnetic moment, forma-
tion energy, and bulk modulus as its training data and lattice
constant is marked as the target group. The values for the target
group are grouped together according to labels that are specific
to each support vector machine. In the case of lattice constant, val-
ues are given a group name of 0 if the value falls between 0 and 2.5,
1 if the value is between 2.5 and 3.0, 2 if the value is between 3.0
and 3.5, 3 if the value is between 3.5 and 4.0, and 4 if the value is 4
or higher. Similarly, a support vector machine for formation energy
would use the group values 0 and 1 to represent endothermic and
exothermic values and organize the target group values by
whether or not they are positive or negative. Support vector machi-
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