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a b s t r a c t

This work is devoted to development of instruments of the statistical mechanics as well as to their appli-
cation in studying microstructural behavior of the metal matrix composites reinforced with randomly
positioned silicon carbide (SiC) particles. The micro-scale representative volume element (RVE) models
of the materials were studied. Their microstructure was described with the correlation functions of dif-
ferent orders. Analytical expressions for the local stress and strain fields’ statistics were obtained using
the solution of the boundary value problem in statistical formulation. The developed analytical model
allows to take into account both geometrical parameters of microstructure and physical–mechanical
properties of constituents. The case studies of multiphase Ti + SiC and Al + SiC metal matrix composites
were investigated. Analysis of influence of the microstructural parameters on behavior of each of the
phases was performed with obtaining of the numerical results for the statistics of stress and strain fields.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Extensive interest in developing of new composite materials is
supported by highly demanding tasks formulated by aerospace,
automotive, electronics and other industries. The distinct class of
the composites represents metal matrix, reinforced by particles of
different geometrical and mechanical properties. Compared to the
traditional materials and polymer matrix composites, for a number
of applications metal matrix composites (MMCs) reveal better
behavior under high temperatures, greater strength, improved
resistance to wear and high cycle fatigue, higher stiffness-to-
weight ratio, significant electrical and thermal conductivity.

Creation of analytical instruments, which can deliver recom-
mendations for the optimal design of composite materials, appro-
priate to particular applications, is an important task. It was proved
that the effect of constituents’ distribution plays crucial role on the
macro-scale behavior of composites [1–5]. Such studies were also
performed for MMCs, which reinforcement types range from fibers
to particles [6–8]. Precise microstructural mechanical modeling of
such materials gives an opportunity for prediction of their effective
behavior, taking into account micro-scale peculiarities, such as size
of particles, their volume fraction, orientation, dispersion and
clustering.

The approach, which this work is devoted to, is based on
methods of the statistics and the theory of random functions. It
presumes that the microstructural behavior of materials can be

evaluated by local fields’ statistics, such as first and second order
moments [9–11].

The aim of this work is to develop methodology of obtaining of
high order statistical descriptors for RVEs of multiphase metal
matrix composites with embedded silicon carbide (SiC) randomly
distributed inclusions. The derived analytical model, in general, is
suitable to any multiphase composite. As the numerical case
studies, the most common MMC composites with aluminum (Al)
and titanium (Ti) matrix, reinforced by SiC inclusions, were
analyzed.

2. Methodology description

2.1. Characterization of random microstructure

The microstructure of particle-reinforced composites often
represents random heterogeneous multiphase media. According
to the statistical approach, the indicator functions kCð~rÞ can be
introduced to define morphology of such materials on a micro-
scopic scale [11–13]. Values of these functions depend on position
of the radius-vector ~r in the RVE. Particularly, kCð~rÞ ¼ 1 if the
radius-vector indicates phase C and kCð~rÞ ¼ 0 otherwise.

Taking that into account, the stiffness tensor for such RVE is
statistically homogenous and is defined as a sum of products of a

stiffness tensor CðzÞ
ijkl and respective indicator function kCð~rÞ for each
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constituent. As a result, it takes a form of the piecewise constant
coordinate function:

Cijklð~rÞ ¼
Xn
z¼1

kCð~rÞCðzÞ
ijkl ð1Þ

Averaging Eq. (1) gives a constant isotropic tensor, which
depends on the volume fractions of phases:

hCijklð~rÞi ¼
Xn
z¼1

pðzÞC
ðzÞ
ijkl ð2Þ

where pðzÞ ¼ hkðzÞð~rÞi is the volume fraction of the phase z.
The hypothesis of ergodicity of the random functions kCð~rÞ

allows to consider ensemble averaging of RVE’s realizations equal
to the averaging by a single volume [14]. In other words, it is
possible to state that hkðzÞð~rÞi ¼ hkðzÞð~r1Þi for every~r and~r1. Taking
this into account, the stiffness tensors Cijklð~rÞ and the indicator
functions kCð~rÞ for the RVE can be decomposed into two summands
– an averaged value and a fluctuation:

Cmnklð~rÞ ¼ hCmnklð~rÞi þ C 0
mnklð~rÞ; ð3Þ

kCð~rÞ ¼ hkCð~rÞi þ k0Cð~rÞ; ð4Þ
where fluctuations define at which extent the value of the function
differs from the averaged one. In other terms, it shows how the
random structure would be different from the periodical one with
the same geometrical parameters [15].

Besides the constants that quantitatively describe the structural
geometrical basics, the instruments of statistical approach offer
descriptors for assessing the spatial interaction between micro-
scale structural components [11]. The most widely used one is
the correlation functions, which describe how microscopic parti-
cles at different positions inside RVE are related [12,16]. Thus,
the n-order correlation function can be defined as the average of
the scalar product of n random variables at different positions of
radius-vectors~r;~r1; . . . ;~rn. For the fluctuation of random indicator
function, expression for the correlation function in general can be
written as:

KðnÞ
kC
ð~r;~r1; . . . ;~rnÞ ¼ hk0Cð~r1Þk0Cð~r2Þ . . . k0Cð~rnÞi

¼ hðkCð~r1Þ � pCÞðkCð~r2Þ � pCÞ . . . ðkCð~rnÞ � pCÞi; ð5Þ
The correlation functions are sensitive to such parameters as

arrangement, orientation and shape of microstructural con-
stituents. Theoretically, the infinite number of the correlation func-
tions can uniquely determine the microstructural morphology of
composites. These functions are used as the geometrical descrip-
tors in the problems of obtaining high order statistics for micro-
stress and strain fields [11,12,17].

The methodology of correlation functions requires initial exper-
imental data regarding the internal structure of composites RVE.
The imaging techniques, such as micro-CT, are commonly used
for microstructural characterization [14,18]. Another way is mod-
eling using some predetermined geometrical parameters. In order
to obtain the values of the correlation functions (5) for the
microstructure, it is necessary to know the fields of indicator func-
tions (4) values. They can be obtained by implementing algorithm,
which maps a RVE with a fixed step grid and checks the presence of
phases in its every node (see Fig. 1). Precision of the functions
depends then on the step of the grid.

2.2. Micro-scale stress and strain fields statistics

In the terms of statistical mechanics approach, the local fields,
such as displacements um, strain eij and stress rij inside RVE with
random microstructure are usually considered random functions.

They depend on the radius-vector and can be represented similarly
to Eqs. (3) and (4):

umð~rÞ ¼ humð~rÞi þ u0
mð~rÞ; ð6Þ

eijð~rÞ ¼ heijð~rÞi þ e0ijð~rÞ; ð7Þ

rijð~rÞ ¼ hrijð~rÞi þ r0
ijð~rÞ: ð8Þ

The multipoint statistics, calculated for stress and strain fields
in RVE as well as in each phase separately, can be used for analysis
of microstructural parameters’ influence on behavior of heteroge-
neous materials. The mean values in Eqs. (6)–(8) are constants,
therefore the statistics are constructed for the fluctuations. The
widespread models for calculating effective material’s characteris-
tics usually operate the first and the second order moments of the
local fields [10,11]. The first-order moments represents average
values, while the second-order moments are also referred as
dispersions.

The average values of stress and strain in RVE depend on load-
ing and on the effective stiffness tensor C�

ijkl. The formulas for the

second-order moment for strain fields he0ijð~rÞe0abð~rÞi in the whole
RVE can be constructed using the fluctuations of displacements
u0
mð~rÞ and the Cauchy relations e0ijð~rÞ ¼ 1

2 ðu0
i;jð~rÞ þ u0

j;ið~rÞÞ. The
second-order moment for stress can be defined by taking into
account the state equation rijð~rÞ ¼ Cijklð~rÞeklð~rÞ, Eq. (8) and stress
fluctuations, which are expressed as following:

r0
ijð~rÞ ¼ rijð~rÞ � hriji

¼ C 0
ijklð~rÞheklð~rÞi � hC 0

ijklð~rÞe0klð~rÞi þ hCijklð~rÞie0klð~rÞ: ð9Þ
Formulas for the first- and second-order strain and stress

moments for a phase C were for the first time obtained by Volkov
[19] and contain mixed moments, combining fluctuations of the
indicator function and local fields:

heijiC ¼ eij þ 1
hkCð~rÞi hk

0
Cð~rÞe0ijð~rÞi; ð10Þ

hrijiC ¼ hriji þ 1
hkCð~rÞi hk

0
Cð~rÞr0

ijð~rÞi; ð11Þ

he0ijð~rÞe0abð~rÞiC ¼ he0ijð~rÞe0abð~rÞi þ eijeab � heijiCheabiC
þ 1
hkCð~rÞi hk0Cð~rÞe0ijð~rÞe0abð~rÞi þ eijhk0Cð~rÞe0abð~rÞi

�
þ eabhk0Cð~rÞe0ijð~rÞi

�
; ð12Þ

hr0
ijð~rÞr0

abð~rÞiC ¼ hr0
ijð~rÞr0

abð~rÞi þ hrijihrabi � hrijiChrabiC
þ 1
hkCð~rÞi hk0Cð~rÞr0

ijð~rÞr0
abð~rÞi þ hrijihk0Cð~rÞr0

abð~rÞi
�

þ rabihk0Cð~rÞr0
ijð~rÞi

D �
: ð13Þ

The numerical calculation of the local fields’ statistics is con-
nected with finding the fluctuations of displacements, which can
be obtained from solution of the boundary value problem in the
stochastic formulation.

3. Boundary value problem

The stochastic boundary value problem (SBVP) contains the fol-
lowing equations:

rij;jð~rÞ ¼ 0; ð14Þ

eijð~rÞ ¼ 1=2ðui;jð~rÞ þ uj;ið~rÞÞ; ð15Þ
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