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a b s t r a c t

A novel multiscale finite element is developed for the prediction of single layer graphene mechanical
response. The introduced model implements a coarse-grained multiscale approach and targets computa-
tional efficiency via dimensionality reduction. Recovery of the full atomistic configuration is also possible.
The element employs a set of molecular mechanics based finite elements previously developed for the
prediction of the elastic response and fracture of graphene at atomistic level simulations. The develop-
ment of a simple multilevel finite element is described and predictions are validated against theoretical
and experimental data. Results appear to be in a very good agreement.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The discovery of stable single layer graphene [1,2] has boosted
effort towards the development of computational tools for the sim-
ulation of its response. Fortunately, graphene has been theoreti-
cally studied for decades before its discovery, as a starting point
for graphite and fullerenes. Despite the strong theoretical back-
ground, various issues arise when practical applications are consid-
ered. Traditional modeling approaches like molecular dynamics
and tight-binding have been successfully employed and various
aspects of the graphene behavior have been highlighted; although
very successful, the required amount of computational power and
resources grows exponentially with the number of atoms involved.
Furthermore, if graphene-based Nanodoped Polymer Composites
are considered, fully atomistic simulations are rather impossible
for dimensions of practical interest. Multiscale modeling has
proved to be a major asset for the investigation of large scale
atomic systems.

As the name implies, multiple material scales are combined and
coupled. Generally, based on the scale-bridging methodology, mul-
tiscale methods can be divided into two major categories: (i) Hier-
archical and (ii) Concurrent methods. Hierarchical methods are
based on the two-scale convergence concept [3] and its generaliza-
tion to multiple scales [4]. This is actually a ‘‘bottom-up” approach,
according to which, material properties are initially derived from a
fully atomistic representation and then fed sequentially as input

across multiple higher scales until the macroscopic behavior is
obtained. These methods are particularly useful for macroscopi-
cally homogeneous materials. Typical examples are the Asymptotic
Homogenization [5], the Quasi-Continuum (QC) Method [6],
Coarse-Grained Molecular Dynamics (CGMD) [7], etc. On the other
hand, Concurrent methods employ multiple scale models simulta-
neously in the same analysis. The problem domain is divided into
atomistic and continuum sub-domains connected to each other
with special transitional areas; among others, the Ghost Force Cor-
rection Method [8], the Force-Based coupling [9], Blending
Schemes [10], etc. have been proposed for the coupling of the indi-
vidual sub-domains. Concurrent methods are particularly useful
for the investigation of localized phenomena and typical examples
include the Heterogeneous Multiscale Method (HMM) [11], the
Macroscopic Atomistic Ab-Initio Dynamics (MAAD) [12,13], the
Bridging Scale Methods (BSM) [14,15], the FE2 method [16,17], etc.

Considering multiscale analysis of graphene, numerous works
can be found in the literature. To begin with, existing Carbon Nan-
otube (CNT) models are generally applicable to graphene with
minor modifications. More focused investigations require consid-
eration of graphene’s special characteristics like its 2D nature
and its lattice structure. Arroyo and Belytschko have developed a
methodology for single layer crystalline films [18] which later
became the basis for other works. Belytschko et al. have also
demonstrated coupling methods for bridging atomistic and contin-
uum scales [10,19] using a ‘‘handshake” area for the coupling.
Based on the Cauchy–Born rule, Larsson and Samadikhah [20]
have employed an atomistic unit lattice and treated graphene as
homogenized 2D membrane. Sfyris and Galiotis [21] have also
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incorporated lattice curvature by considering a two-lattice
structure.

Although, the methodologies for continuum and homogenized
modeling are well-established, the atomistic part of multiscale
analysis still remains a challenge. Various computationally effi-
cient techniques have been successfully demonstrated. Finite Ele-
ment based methods become very popular, as they take
advantage of similarities in the formulations between strain
energy and molecular potential. A common, yet rather simplistic,
method models graphene using classical rod and beam finite ele-
ments whose nodes represent carbon atoms by replacing stretch-
ing, bending and torsion stiffness terms with effective quantities
calculated frommolecular potential equations [22]. In a more com-
prehensive approach, specialty molecular finite area elements have
been reported encompassing the molecular potential, either
through homogenization [23], or based on the repetitive hexagonal
pattern of the graphitic lattice [24]. More recently, the authors
have published a new formulation, amenable to the investigation
and simulation of graphene failure, where each atomistic interac-
tion type is represented by a special finite element; this modeling
approach encapsulates all atomistic details and proved to yield a
reasonably good approximation of graphene response, including
graphene fracture [25,26].

The latter is further extended in this paper towards a MultiScale
Finite Element (MSFE) model targeting both accuracy and compu-
tational efficiency. The most important features of the introduced
formulation are summarized in the following:

1. Lack of assumptions regarding the homogeneity and periodicity.
The majority of existing models for graphene rely on assump-
tions like the Cauchy–Born rule and assume homogeneous
deformations. Although this approach generally gives reason-
ably accurate results, it can also be the source of numerical
errors and artifacts associated with the deformation gradient
[9], especially when nonlinearities and instabilities occur. On
the contrary, the MSFE approach makes no assumptions for
the homogeneity or periodicity of deformations, but performs
a full nanoscale analysis on finite systems and obtains accurate
atomistic configurations.

2. Bidirectional approach. Most homogenization methods usually
employ a bottom-up approach; i.e. the atomistic configuration
feeds an effective continuum model. The presented approach
employs a nonlinear regression model and provides a reverse
mapping from the MSFE representation to an accurate atomic
configuration. This is particularly useful for the investigation
of localized phenomena in full atomistic detail.

3. Computational efficiency. Owing to dimensionality reduction and
formulation simplification, the MSFE representation requires
significantly less computational effort than a typical molecular
mechanics simulation. The efficiency of the multiscale model is
quantified in terms of timing and resource allocation. Further-
more, the presented formulation can be easily incorporated into
commercial FE codes that support user-defined constitutive
models; such codes are highly optimized and can boost speed
even more.

The developed MSFE in its current state can be used for the pre-
diction of graphene response. Ultimately, it may be incorporated in
other successful methodologies dealing with multiscale simula-
tions of graphene and even nanotube composites [27,28] in order
to facilitate the computationally demanding nanoscale calcula-
tions. To avoid any misleading conclusions, the MSFE approach
does not intent to replace the Molecular Mechanics methodology;
instead, it provides a fast numerical tool to speed up calculations
regarding structural deformation of graphene. Calculations that
strongly rely on the exact atomic configuration, should still be

conducted using the atomic configuration, as recovered from the
MSFE assembly.

This ultimate goal of this work is not only to introduce the
MSFE, but also to describe the methodology concept in a stepwise
fashion, so that other independent researchers may reproduce the
envisioned approach and further develop it. To this end, all techni-
cal details – including employed parameter sets and derived coef-
ficients – are provided. The rest of the paper is organized as
follows: Section 2 provides the effective molecular mechanics rep-
resentation of graphene, which will be the basis for the multiscale
model. This has been previously published by the authors [25,26],
but some basic features have to be included herein, in order to
make the paper self-consistent. Section 3 describes the Atomic-
to-MSFE Mapping and the numerical solution procedure. Section 4
describes the reverse mapping from the MSFE model to atomic
configuration. Section 5 demonstrates validation cases and quan-
tification of computational efficiency.

2. Molecular mechanics formulation

The mechanical response of graphene depends on a number of
atomic interactions, including bond stretching, angle bending,
dihedral angles, improper angles, non-bonded interactions, elec-
trostatic interactions, etc. Existing numerical formulations repre-
sent such interactions as contributions of respective energy
terms in coupled or uncoupled form; typical choices for the mod-
eling of atomic interactions in graphene are the very popular and
successful Tersoff–Brenner [29] and AIREBO [30] potentials, and
various Morse-type formulations. The number of interactions con-
sidered within an analysis determines the accuracy of a model, as
well as its computational efficiency. Intuitively, incorporation of
too many energy terms can lead to very accurate, but computation-
ally prohibitive formulations.

For the needs of the present work, the energy terms are limited
to bond stretching, angle bending and dihedral angles in uncoupled
form. Previous works [25,26] proved that this set of energy terms is
adequate for a reasonably accurate description of graphene, includ-
ing out-of-plane deformations and fracture. The energy terms for
bond stretching (Vstr) and angle bending (Vang) are dominant, while
the weaker term for dihedral angles (Vdih) is only activated for out-
of-plane deformations. Following this, the total potential (V) of a
graphene flake can be expressed as

V ¼
X

Vstr rij
� �þXVang hijk

� �þXVdih /ijkl

� �
: ð1Þ

where rij is the Euclidean distance between atoms i; j, which is
equal to the bond length of the respective atoms; hijk is the angle
formed by atoms i; j; k; and /ijkl is the dihedral angle formed by
the planes defined by h-angles.

The individual energy terms are further expanded to

Vstr rij
� � ¼ D � e�a rij�r0ð Þ � 1

h i2
ð2Þ

Vang hijk
� � ¼ k

2
� hijk � h0
� �2 � k0

3
� hijk � h0
� �3 ð3Þ

Vdih /ijkl

� � ¼ 1
2
kd � /ijkl � /0

� �2
: ð4Þ

The employed parameter set for Eqs. (2)–(4) is obtained from previ-
ous successful works [31,32]; to ensure high accuracy, the coeffi-
cients for the dominant terms ðVstr;VangÞ have been derived from
DFT-based calculations. All constants are listed in Table 1. Mini-
mization of the total energy provides the equilibrium state under
any loading condition.
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