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a b s t r a c t

The performance and durability of lithium-ion batteries are highly dependent on the microstructures of
their components. Recently, methods have been developed that make possible the simulation of
electrochemical processes on 3D representations of lithium-ion batteries. However, it is difficult to obtain
realistic microstructures on which these simulations can be carried out. In this paper, we develop a
stochastic model that is able to produce realistic microstructures of lithium-ion battery anodes, which
can serve as input for the simulations. We introduce the use of Gaussian random fields on the sphere
as models for the particles that form the anodes. Using this new approach, we are able to model realistic
particle geometries. The stochastic model also uses a number of techniques from stochastic geometry and
spatial statistics. We carry out validation of our model, in order to demonstrate that it realistically
describes the key features of the anode’s microstructure.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Lithium-ion batteries used in electric vehicles need to fulfill a
number of requirements. They should charge quickly, especially
at low temperatures, be highly durable under a wide range of
climatic conditions, and provide sufficient energy storage capabil-
ities for long driving ranges [1]. A number of challenges remain,
however, in satisfying these requirements. These are largely due
to the complex nature of the batteries’ microstructures. For exam-
ple, lithium plating can occur at low temperatures; see [2–5]. This
is caused by the slow transport of lithium ions in the electrolyte
and bulk material, which is a direct result of the geometry of the
microstructure; see [6,7]. Cyclic aging is also related to the
microstructure; see, e.g., [5,8,9]. The influence of different operat-
ing conditions on cell degradation has been studied using electro-
chemical principles; see, e.g., [7,10]. Much of this research has
made use of 1D or pseudo-2D models developed by Newman and
co-workers [7]. For example, aging has been studied in [11] and
lithium plating has been studied in [10,12]. However, these models
do not fully take into account the importance of the microstructure
and use only averaged structural characteristics like tortuosity,
volume fraction and mean particle radius. Recent research,

however, shows that the microstructure plays a key role in deter-
mining functional characteristics of the material; see, e.g., [13,14].

Recently, significant advances have been made in the simula-
tion of electrochemical processes in 3D models of lithium-ion bat-
teries [6,15–18]. Using these simulations, it is possible to carry out
detailed studies of the relationships between the morphologies of
battery materials and their corresponding transport behaviors.
This approach has proven very effective in studying other energy
materials, such as fuel cells; see, e.g., [19,20]. Important processes
such as degradation can also be investigated and connected to the
properties of the materials. A limitation of these simulation based
approaches, however, is that it is very difficult to obtain realistic
3D microstructure models to use as input. This is because the small
scales make 3D imaging of sufficiently large and representative
material samples very difficult; see [21–25]. In addition, it would
be desirable to investigate realistic microstructures that do not
correspond to materials that have already been physically
produced [26].

Stochastic modeling has proved to be a very effective method of
producing realistic microstructures without the need for micro-
scopy or computationally expensive physics-based simulations;
see, e.g., [27–35]. Stochastic models have also been successfully
coupled with numerical simulations; see, e.g., [28,36,37]. Using fast
and flexible stochastic models, it is then possible to investigate the
relationships between microstructure characteristics and material
functionality [38].
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In this paper, we develop a stochastic model for the microstruc-
ture of lithium-ion battery anodes, which consists of a network of
connected graphite particles. The model uses a number of tech-
niques from stochastic geometry and spatial statistics; see, e.g.,
[39–41]. As a major innovation, it introduces the use of Gaussian
random fields on the sphere to model particle shapes. In most stan-
dard approaches, particles are described by simple geometric
objects such as balls and ellipsoids. However, the particles we con-
sider are not adequately described by such shapes [42,43]. Using
spherical harmonics expansions of Gaussian random fields, we
are able to represent particles with much more complex shapes
[42,44].

Our stochastic model uses a random tessellation to roughly
describe the shape, size and position of the particles. A random
graph is then used to describe how the particles connect with
one another, in order to replicate the connectivity structure of
the material itself. Using the tessellation and the connectivity
graph, the particles themselves are produced. We exploit proper-
ties of Gaussian random fields to force the particles to connect in
the desired manner. In the final step, the structure is morphologi-
cally smoothed to resemble the empirical microstructures as
closely as possible.

The paper has the following structure. We first briefly describe
the material and the methods by which we image it and extract its
microstructure. We then describe the stochastic model itself.
Afterward, we carry out validation of the model, by considering a
number of important microstructure characteristics. In the last
section, we provide a summary of the paper and describe future
research that we will carry out.

2. Experimental data

The experimental data in this paper consists of four samples
that are extracted from a large scale lithium-ion battery used in
automotive applications. The cell did not contain electrolyte in
order to ensure that the microstructure of the anode was not
altered by electrical operation. The cell was disassembled and four
samples were extracted from different positions and layers in the
cell. This was done to ensure that the samples were as reflective
as possible of the material’s structure; see [23]. The obtained image
data is shown in Fig. 1 alongside the binarized and segmented
versions.

2.1. Description of samples and imaging technique

The 3D data sets were created at the Synchrotron X-ray imaging
facility BAMLine at BESSY (Berlin, Germany). The setup consists of
a PCO4000 detector system with 4008� 2672 pixels and an optical
system (Optique Peter) with a CWO scintillator screen that was
used to convert X-rays into visible light. An X-ray energy of
19 keV was used. The pixel size was about 0:44 lm2. During the
tomographic measurement, 2200 single radiographic projections

were taken at equidistant angles over a range of 180�. A filtered
back-projection algorithm was used for 3D data reconstruction.

Details on the measurement and on the sample preparation
method that was used to minimize the differences in the samples
induced by varying measurement conditions are described in [23].
After imaging and reconstruction, the sample data is in the form of
four 3D images, each 2097� 828� 119 voxels. Each voxel has a
grayscale value, which ranges from 0 to 255.

2.2. Structural segmentation

A graphite electrode comprises a fully connected network of
particles. In order to extract information about the individual par-
ticles from the image data, we carry out a structural segmentation
procedure consisting of four steps: (1) we binarize the original
grayscale image; (2) we remove holes within the particles; (3)
we remove irregularities such as parts extruding from the surfaces
of the particles; (4) we segment the image into separate particles
using a watershed procedure.

In the binarization step, we allocate each voxel to either the
solid (graphite) phase or to the pore space. We first apply a
Gaussian filter with r ¼ 1:0 in order to reduce the noise in the
image data. We then use a global threshold to produce a binarized
image. More precisely, every voxel with a grayscale value greater
than or equal to 32 is assigned to the solid phase and every voxel
with a value less than 32 is assigned to the pore phase; see [45]
for more details. The threshold value is chosen to reproduce the
volume fraction of the solid phase, which is known to be 73% for
this material.

In the second step, we remove holes within the solid phase in
order to avoid over-segmentation which would otherwise occur;
see [46]. These holes are mainly caused by artifacts in the imaging
and thresholding procedures. The particles themselves should not
contain holes. We remove the holes using a Hoshen–Kopelman
clustering algorithm (see [47]) on the pore phase of the thresh-
olded image. Every cluster consisting of less than 5000 pore space
voxels is removed by relabeling all the member voxels as belonging
to the solid phase. The threshold of 5000 was chosen to ensure that
hollow regions within particles were removed, but isolated pores
still remained.

We then remove regions where the pore space intrudes signif-
icantly into the particles. The procedure is as follows. We generate
a one voxel thick skeletonization of the pore phase. The skeleton,
S1, is generated using Lee thinning [48]. The ‘dead-end’ branches
of S1, which are only connected at one end, represent intrusions
into the solid phase. We generate a second skeleton, S2, which is
simply S1 with the ‘dead-end’ branches removed. We remove the
intrusions by reassigning to the solid phase all voxels in the pore
space that are closer to S1 than S2.

In the last step, the four binary images are segmented into
disjoint parts, with each part containing only one particle. The seg-
mentation is performed for each binary image using a marker

(a) Grayscale image. (b) Binary image. (c) Segmented image.

Fig. 1. 2D cutout of experimental data.
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