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a b s t r a c t

Genetic algorithm (GA) is used to optimize the parameter set of the second nearest-neighbor modified
embedded atom method (2NN MEAM) interatomic potential for silicon (Si). The optimization is carried
out by tuning the parameters to match a set of physical properties including elastic constants, point
defect formation energy, phase transformation, surface formation/relaxation and stacking faults.
Besides the physical properties for optimization, other molecular dynamics (MD) predictions such as
surface reconstruction, point defect diffusion, dislocations and thermal properties are also calculated
to test the robustness of the new potential. Another purpose of this work is to compare various physical
properties of available MEAM potentials for Si (and Tersoff and SW where necessary). It is shown that the
new potential gives a better description in surface, stacking fault and dislocation. Finally, extensive
discussion is given to specify the applicability of this potential and the validity of the potentials on
fracture simulation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In technological areas such as integrated circuit (IC),
micro-electro-mechanical systems (MEMS), Si is a very important
material. Besides, as a representative covalent element, it has great
significance in theoretical research. With the great progresses in
semiconductor processing technologies, Si micro/nano structures
are fabricated at ever-decreasing length scales, making it necessary
to understand material behaviors at nano or even atomic scale.

Several techniques enable investigation of atomic interactions,
among which quantum mechanics-based density functional theory
(DFT) and empirical method molecular dynamics (MD) are most
widely used. DFT can accurately describe covalent nature, which,
however, cannot deal with a system with thousands of atoms
despite of rapid development of computers technologies.
Somehow, many physical phenomena, such as dislocation emission
and expansion, can be only observed in large systems. Therefore,
(semi-)empirical potentials play a critical role in simulation
experiments.

Over 30 (semi-)empirical potentials for Si can be found in pub-
lished Ref. [1], mainly in SW [2], Tersoff [3], EDIP [4], EAM [5],
MEAM [6] formalisms. MEAM is a semi-empirical one and able to

maintain the brittle nature of Si [7–9]. Though a modified SW
can describe the brittleness of Si [10], it reproduces much worse
elastic constants and melting point than the original one. In
addition, MEAM can predict many physical attributes as good as
other empirical approaches, like elastic constants, surface relax-
ation/reconstruction, phase transformation [11]. Hence MEAM is
a better choice for simulating mechanical properties of Si.

By adding angular terms in the EAM model [5], Baskes et al. ini-
tially proposed MEAM formalism [6] that has been constructed for
26 elements [12], including gas elements nitrogen, oxygen and
hydrogen. The original MEAM just took the first nearest neighbor
atoms into consideration, thus showed some drawbacks when
applied for BCC crystals [13]. To fix this, Lee and Baskes developed
the 2NN MEAM [13], a more generalized version. MEAM model for
Si has been modified for different purposes. For example, Lee [11]
improved the description of surface relaxation, thermal expansion
and amorphous structure; Swadener et al. [14] modified the
potential parameters to get a better description of vacancy
clusters; Ryu’s version [15] gives a better agreement with melting
point and latent heat.

Effects of surface and dislocation on the mechanical perfor-
mances become increasingly prominent as the scale decreases.
Stacking fault is closely related to dislocation which is inseparably
linked with mechanical behaviors such as fracture, residual stress
and fatigue failure. As a brittle material, Si is extensively deemed
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to be inaccessible to fatigue fracture. Nevertheless, it has been
experimentally confirmed that Si would fatigue and generate dislo-
cations under ambient condition [16,17]. To our knowledge, there is
still no MEAM potential that is optimized considering stacking fault
of Si. Lenosky et al. [18] developed a new MEAM formalism known
as HOEP that gave better stacking fault formation energies than the
other MEAM potentials for Si though it was not specially optimized
for stacking fault. Anyhow, we think the agreement is not good
enough and needs improvement. As for surface, the most concerned
are formation, relaxation and reconstruction properties, which are
closely related to grain boundary, twin and surface effects. In engi-
neering fields, silicon usually exists in polycrystal. Therefore, for a
better description of polycrystal Si structures, MEAM should basi-
cally predict surface properties well enough. As mentioned above,
though Lee [11] has optimized the parameter set to better predict
surface properties, we intend to go further in this research.

This paper mainly reports two aspects. First, the parameters of
2NN MEAM potential for Si are optimized using GA, and various
MD predictions are compared with experimental values, first prin-
ciple calculations, and other MEAM counterparts. Moreover, we
calculated some other properties, like melting point and enthalpy
change, to test the reliability of this new potential. Second, as
MEAM model cannot describe every physical property very well
with a specified set of parameters, the respective advantages of
MEAM potentials from Baskes et al. [6], Lee [11], Jelinek et al.
[19], Ryu et al. [15], Lenosky et al. [18], Cui et al. [20], Swadener
et al. [14] are figured out, so that researchers can choose the appro-
priate parameter set according to investigation targets.

2. Methodology

2.1. 2NN MEAM interatomic potential

The complete 2NN MEAM theory can be found in Ref. [21]. Here
we introduce its primary frame and illustrate the differences from
other related literatures. In the 2NN MEAM model, the total energy
of a system is calculated as
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where Fið�qiÞ is the embedding function, �qi is the background elec-
tron density at site i, and /ðRijÞ is the pair interaction between
atoms i and j at a distance Rij. Lenosky’s MEAM formalism is slightly
different from (1). Details can be found in Ref. [18].

The embedded function is given by

Fð�qÞ ¼ AEcð�q=�q0ÞInð�q=�q0Þ ð2Þ

where A, Ec and �q0 are respectively adjustable parameter, sublima-
tion energy and background electron density for the reference
structure.

The background electron density �q consists of spherically sym-
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qð2Þi and qð3Þi with the following expression
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where qaðhÞ
j is the atomic electron densities of j at a distance Rij rel-

ative to the site i, and Ra
ij , Rb

ij; Rc
ij are components of the distance vec-

tor between atoms i and j.
The total background electron density is calculated by combin-

ing the contributions in a specified form. In this work, we use the
most widely used form:

�qi ¼ qð0Þi GðCÞ ð7Þ

where Gamma function GðCÞ can be expressed in different ways
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where C is calculated as
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It is worth noting that (8.1) is used in this work. Some other lit-
eratures [12,14,19] used (8.2). tðhÞ are adjustable parameters. The
atomic electron density is given by

qaðhÞðRÞ ¼ q0 exp �bðhÞðR re � 1Þ=
h i

ð10Þ

where b(h) are adjustable parameters, re is the nearest neighbor dis-
tance in the equilibrium reference structure. The scaling factor q0

has no effect on pure element system, thus usually set 1.
In reference structure, the energy per atom is a function of

nearest-neighbor distance R, which can be written as [22]

EuðRÞ ¼ �Ecð1þ a� þ d � ða�Þ3Þe�a� ð11Þ

a� ¼ aðR=re � 1Þ ð12Þ

a ¼ ð9BX=EcÞ1=2 ð13Þ

d ¼
drepuls; a� < 0
dattrac; a� > 0

�
ð14Þ

In (11), the universal function EuðRÞ is used to describe a uni-
form expansion or contraction in the reference structure, B is the
bulk modulus, X is the equilibrium volume per atom, drepuls and
dattrac are adjustable parameters, which in most published litera-
tures were set d = drepuls = dattrac. However, we have found that
drepuls has great impact on surface, self-interstitial and stacking
fault, and dattrac on stacking fault and phase transformation. We
can get much better stacking fault predictions when drepuls and
dattrac are dealt with independently.

In 2NN MEAM frame, EuðRÞ can also be expressed as

EuðRÞ ¼ F½�q0ðRÞ� þ ðZ1=2ÞuðRÞ þ ðZ2S=2ÞuðaRÞ ð15Þ

where Z1 and Z2 are respectively the number of first- and second-
nearest neighbor atoms, a is the ratio between the first- and
second-nearest-neighbor distances, and S is many-body screening
factor decided by two adjustable parameters Cmax and Cmin, see
Ref. [23].
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