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In this study a computational method of the multi-reference VCA (virtual crystal approximation)
pseudo-potential generation is presented. This is an extension of that proposed by Ramer and Rappe
(2000), the scheme of which is in want of the explicit incorporation of semi-core states. To compensate
this drawback, a kind of fine tuning is applied to the non-multi-reference VCA pseudo-potential; the form
of the pseudo-potential is slightly modified within the cut-off radius in order that the agreements
between the pseudo-potential and all-electron calculations are guaranteed both for semi-core and
valence states. The improvement in the present work is validated by atomic and crystalline test calcula-
tions for the transferability and the lattice constant estimation.
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1. Introduction

The purpose of the present article is to show a way to generate a
reliable pseudo-potential which is applicable to inhomogeneous or
super-lattice crystal structures.

Frozen core model in pseudo-potential generation often suffers
from a kind of inaccuracy where the relaxation in the semi-core
state is not negligible, as is notable in transition metals, since, in
these elements, owing to the overlapping of the semi-core and
the valence states, it is inappropriate to assume the semi-core state
as chemically inert one. In these elements, for the more accuracy,
the pseudo-potential is generated for the topmost,
fully-occupied, semi-core p level, not for the empty valence state.
This treatment allows the relaxation of the semi-core state in the
simulation, but causes an inevitable inaccuracy in the
pseudo-potential result. In the atomic pseudo-potential computa-
tion, the semi-core state, lying in the lowest p-level, is in exact
agreement with the all-electron result as to the energy and the
square norm of the amplitudes of the wave-functions outside the
cut-off radius. On the other hand, there is no such an agreement
for the empty valence p-level, obtained as the second-lowest
p-level, in which the discrepancy between the pseudo-potential
and the all-electron computations always exists. In order to correct
this drawback, it is necessary to introduce some schemes called
multi-reference-pseudo-potential (MRPP) [1], so that the calcu-
lated properties for the valence and semi-core states by the
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pseudo-potential and all-electron computation coincide with each
other. (In some references, this technique is described as “the
explicit incorporation of semi-core states”.)

Concerning the crystalline pseudo-potential computation, there
is an approximating method named “virtual crystal approximation
(VCA)”. This is a method to deal with the disordered crystal (and
also applicable to the super-lattice structure). To represent the
inhomogeneity and to reproduce the averaged property of the dis-
ordered crystal, the atomic potentials are, in some ways, mixed in
accordance with the composition ratio of the atomic replacement.
In the simplest implementation, the pseudo-potential for ran-
domly distributed elements A and B is simply averaged by the com-
position ratio as x x V4 + (1 —x) x V. This approximation is not
reliable in some cases. Meanwhile, there are more refined ways
in VCA; of which the Ramer-Rappe method [2] is the most reliable
one; it attains more quantitative crystalline simulations than the
simply averaged VCA does. The success of this method will be
ascribed to its ability, by which the eigenvalue and the charge dis-
tribution of the single atom in VCA model can be adjusted to the
averaged all-electron computation in accordance with the compo-
sition ratio. However, it still lacks the explicit incorporation of
semi-core states.

Touching these two topics, the present work proposes a method
to generate multi-reference crystal VCA pseudo-potential. This is
an extension to Ramer-Rappe scheme, toward which a kind of
fine-tuning is applied so that the multi-reference accuracy, i.e.,
the explicit incorporation of semi-core states could be achieved.
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2. Computational method

In the following, these notations are used; the two elements to
be averaged by VCA are denoted by A(B); the principal and angular
quantum numbers are denoted by n(n’) and I; the wave-functions,

eigenvalues and the potentials are denoted as d;’:gﬁ,)).l(r), 8'22’:,))1 and
Vae) (r). The composition ratio is denoted as o for element A and
p for B.

The wave-functions in the virtual atom (i.e. the averaged image
of randomly distributed two elements A and B in the equivalent

atomic site) are computed under following conditions.
[I] The averaged nuclear potential (« + 8 = 1 here):
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[II] The averaged eigenvalue (for the lowest eigenstate):
et = ok + e (2)
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[II] The boundary condition towards the infinity:
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[IV] The norm conserving condition:
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[V] The averaged core charge:
pcore(r) = ap(.’:)l’e(r) + ﬂpfore(r) (5)

The computation proceeds as follows.

(1) With the given energy &;"C, the node-less numerical solution

Y% (r) of the atomic wave equation is calculated by an

inward integration from the infinity to the cut-off radius r..
The potential is determined by the conditions of [I] and
[V]. The wave-function between the cut-off radius and the
infinity is normalized so that the condition [IV] is satisfied.
(2) Prepare the complete pseudo-wave-function. For this pur-

pose, ¢\{'(r) is extended toward the origin (r = 0) by some
analytic function. The pseudo-charge and the electronic
potentials are computed now.

(3) Iterate (1) and (2) and obtain the self-consistent charge. The
new valence charge density is then computed from the
valence pseudo-orbitals, so that the cycle should be com-
pleted. The cycle is repeated until the input and output of
the pseudo-orbitals are equal. In the present implementa-
tion, it requires at most ten iterations, by the usual
Anderson mixing, to gain the convergence of the
self-consistent charge. Indeed, the self-consistent calcula-
tion appears to be superfluous. In the usual pseudo potential
generation, pseudo-orbitals are uniquely determined with-
out self-consistent calculation, if the all-electron potential,
the energy spectrum, and the norm-conservation conditions
are fixed. Nevertheless, the requirement of the
self-consistency is a special feature in the pseudo-potential
generation by the Grinberg-Ramer-Rappe scheme [3] and
its variants. This is required to construct a
scalar-relativistic pseudo-potential that provides exact
agreement with relativistic Dirac-Slater all-electron eigen-
values at the reference configuration. The relativistic

all-electron eigenvalues and the aggregate norm-
conserving conditions are used to obtain the non-
relativistic wave functions and potentials in the all-electron
level as the self-consistent solution. This method improves
transferability of the resulting pseudo-potential. (The
down- and up-spin components in the relativistic equations
are mixed with each other in order to construct the valence
charge, which should be reproduced by the non-relativistic
Schrodinger equation by means of the pseudo-potentials,
with the agreement of the valence charge eigenvalues. This
request has an analogy to the problem of the VCA
pseudo-potential generations.) Since the present method is
one of the variants of the Grinberg-Ramer-Rappe scheme,
and in order to make allowance to accurate relativistic
extension, the VCA pseudo potential generation algorism
presented here follows that of Ramer and Rappe, which con-
structs self-consistent charge in the iterated cycles.

(4) Determine the VCA pseudo-potential which generates

VCA
1 (1)

(5) Apply the fine tuning to realize the multi-reference. This

step follows Teter’s method to generate an extended type
of the norm conserving pseudo-potential [4]. In this method,
the self consistent potential V(r) is modified near the ori-
gin by means of the cut-off function h(r) and the augmenta-
tion terms Y1 ,a;g;(r). The coefficients g; are adjustable ones
so that the computed result will take the required value. (It
is noted here that the extended pseudo-potential by Teter is,
in origin, not the approach to explicit incorporation of
semi-core states. Its purpose is to improve the transferable
property of the pseudo-potential by keeping the agreement
of the “chemical-hardness” between the pseudo-potential
and all-electron computation.)
In the present VCA case for multi-reference extension, fol-
lowing conditions should be satisfied: the eigenvalue and
the square norm outside the cut-off radius of the second
lowest orbital ¢35*(r) agree with the averaged all-electron
result. These conditions are given as
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The computational steps from (1) to (4) are the same as those in
the original Ramer-Rappe method; the step at (5) is the essential
extension by the present work. In this step, the fine tuning pro-
ceeds in the following way. The conditions to be satisfied are newly
given as:
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[I'] The pseudo-potential is readjusted from the screened VCA
pseudo-potential by means of above cut-off functions and
coefficients. In the implementation of the present work,
the functional form is given as

VI (1) = S gy (r) 4 h(r /) VI £ o1~ (/). (8)
i=1

where h(r) is a cut-off function which is zero at the origin and
becomes unity out of the cut-off radius. g;(r) are functions
having i-1 nodes, which are unity at the origin and go to zero
with the zero slope at the cut-off radius. This is an extension
of the functional form of the provisional pseudo-potential in
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