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a b s t r a c t

In this study a computational method of the multi-reference VCA (virtual crystal approximation)
pseudo-potential generation is presented. This is an extension of that proposed by Ramer and Rappe
(2000), the scheme of which is in want of the explicit incorporation of semi-core states. To compensate
this drawback, a kind of fine tuning is applied to the non-multi-reference VCA pseudo-potential; the form
of the pseudo-potential is slightly modified within the cut-off radius in order that the agreements
between the pseudo-potential and all-electron calculations are guaranteed both for semi-core and
valence states. The improvement in the present work is validated by atomic and crystalline test calcula-
tions for the transferability and the lattice constant estimation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of the present article is to show a way to generate a
reliable pseudo-potential which is applicable to inhomogeneous or
super-lattice crystal structures.

Frozen core model in pseudo-potential generation often suffers
from a kind of inaccuracy where the relaxation in the semi-core
state is not negligible, as is notable in transition metals, since, in
these elements, owing to the overlapping of the semi-core and
the valence states, it is inappropriate to assume the semi-core state
as chemically inert one. In these elements, for the more accuracy,
the pseudo-potential is generated for the topmost,
fully-occupied, semi-core p level, not for the empty valence state.
This treatment allows the relaxation of the semi-core state in the
simulation, but causes an inevitable inaccuracy in the
pseudo-potential result. In the atomic pseudo-potential computa-
tion, the semi-core state, lying in the lowest p-level, is in exact
agreement with the all-electron result as to the energy and the
square norm of the amplitudes of the wave-functions outside the
cut-off radius. On the other hand, there is no such an agreement
for the empty valence p-level, obtained as the second-lowest
p-level, in which the discrepancy between the pseudo-potential
and the all-electron computations always exists. In order to correct
this drawback, it is necessary to introduce some schemes called
multi-reference-pseudo-potential (MRPP) [1], so that the calcu-
lated properties for the valence and semi-core states by the

pseudo-potential and all-electron computation coincide with each
other. (In some references, this technique is described as ‘‘the
explicit incorporation of semi-core states’’.)

Concerning the crystalline pseudo-potential computation, there
is an approximating method named ‘‘virtual crystal approximation
(VCA)’’. This is a method to deal with the disordered crystal (and
also applicable to the super-lattice structure). To represent the
inhomogeneity and to reproduce the averaged property of the dis-
ordered crystal, the atomic potentials are, in some ways, mixed in
accordance with the composition ratio of the atomic replacement.
In the simplest implementation, the pseudo-potential for ran-
domly distributed elements A and B is simply averaged by the com-
position ratio as x� VA þ ð1� xÞ � VB. This approximation is not
reliable in some cases. Meanwhile, there are more refined ways
in VCA; of which the Ramer–Rappe method [2] is the most reliable
one; it attains more quantitative crystalline simulations than the
simply averaged VCA does. The success of this method will be
ascribed to its ability, by which the eigenvalue and the charge dis-
tribution of the single atom in VCA model can be adjusted to the
averaged all-electron computation in accordance with the compo-
sition ratio. However, it still lacks the explicit incorporation of
semi-core states.

Touching these two topics, the present work proposes a method
to generate multi-reference crystal VCA pseudo-potential. This is
an extension to Ramer–Rappe scheme, toward which a kind of
fine-tuning is applied so that the multi-reference accuracy, i.e.,
the explicit incorporation of semi-core states could be achieved.

http://dx.doi.org/10.1016/j.commatsci.2015.07.014
0927-0256/� 2015 Elsevier B.V. All rights reserved.

E-mail address: kikuchi.akihito@canon.co.jp

Computational Materials Science 109 (2015) 287–292

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2015.07.014&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2015.07.014
mailto:kikuchi.akihito@canon.co.jp
http://dx.doi.org/10.1016/j.commatsci.2015.07.014
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


2. Computational method

In the following, these notations are used; the two elements to
be averaged by VCA are denoted by A(B); the principal and angular
quantum numbers are denoted by n(n0) and l; the wave-functions,

eigenvalues and the potentials are denoted as /AðBÞ
nðn0 Þ;lðrÞ; eAðBÞ

nðn0 Þ;l and

VAðBÞðrÞ. The composition ratio is denoted as a for element A and
b for B.

The wave-functions in the virtual atom (i.e. the averaged image
of randomly distributed two elements A and B in the equivalent
atomic site) are computed under following conditions.

[I] The averaged nuclear potential (aþ b ¼ 1 here):

VVCA
nuc ðrÞ ¼ aV A

nucðrÞ þ bVB
nucðrÞ ¼

�ðaZ A
nuc þ bZB

nucÞ
r

: ð1Þ

[II] The averaged eigenvalue (for the lowest eigenstate):

eVCA
1;l ¼ aeA

n;l þ beB
n0 ;l: ð2Þ

[III] The boundary condition towards the infinity:

/VCA
1;l ðrÞ ! 0 as r ! 0: ð3Þ

[IV] The norm conserving condition:Z 1

rc

/VCA
1;l ðrÞ

���
���2r2dr ¼ a

Z 1

rc

/A
n;lðrÞ

���
���2r2dr

þ b
Z 1

rc

/B
n0 ;lðrÞ

���
���2r2dr: ð4Þ

[V] The averaged core charge:

qcoreðrÞ ¼ aqA
coreðrÞ þ bqB

coreðrÞ: ð5Þ

The computation proceeds as follows.

(1) With the given energy eAVG
1;l , the node-less numerical solution

/VCA
1;l ðrÞ of the atomic wave equation is calculated by an

inward integration from the infinity to the cut-off radius rc.
The potential is determined by the conditions of [I] and
[V]. The wave-function between the cut-off radius and the
infinity is normalized so that the condition [IV] is satisfied.

(2) Prepare the complete pseudo-wave-function. For this pur-
pose, /VCA

1;l ðrÞ is extended toward the origin (r = 0) by some
analytic function. The pseudo-charge and the electronic
potentials are computed now.

(3) Iterate (1) and (2) and obtain the self-consistent charge. The
new valence charge density is then computed from the
valence pseudo-orbitals, so that the cycle should be com-
pleted. The cycle is repeated until the input and output of
the pseudo-orbitals are equal. In the present implementa-
tion, it requires at most ten iterations, by the usual
Anderson mixing, to gain the convergence of the
self-consistent charge. Indeed, the self-consistent calcula-
tion appears to be superfluous. In the usual pseudo potential
generation, pseudo-orbitals are uniquely determined with-
out self-consistent calculation, if the all-electron potential,
the energy spectrum, and the norm-conservation conditions
are fixed. Nevertheless, the requirement of the
self-consistency is a special feature in the pseudo-potential
generation by the Grinberg-Ramer–Rappe scheme [3] and
its variants. This is required to construct a
scalar-relativistic pseudo-potential that provides exact
agreement with relativistic Dirac-Slater all-electron eigen-
values at the reference configuration. The relativistic

all-electron eigenvalues and the aggregate norm-
conserving conditions are used to obtain the non-
relativistic wave functions and potentials in the all-electron
level as the self-consistent solution. This method improves
transferability of the resulting pseudo-potential. (The
down- and up-spin components in the relativistic equations
are mixed with each other in order to construct the valence
charge, which should be reproduced by the non-relativistic
Schrodinger equation by means of the pseudo-potentials,
with the agreement of the valence charge eigenvalues. This
request has an analogy to the problem of the VCA
pseudo-potential generations.) Since the present method is
one of the variants of the Grinberg–Ramer–Rappe scheme,
and in order to make allowance to accurate relativistic
extension, the VCA pseudo potential generation algorism
presented here follows that of Ramer and Rappe, which con-
structs self-consistent charge in the iterated cycles.

(4) Determine the VCA pseudo-potential which generates
/VCA

1;l ðrÞ.
(5) Apply the fine tuning to realize the multi-reference. This

step follows Teter’s method to generate an extended type
of the norm conserving pseudo-potential [4]. In this method,
the self consistent potential Vscf ðrÞ is modified near the ori-
gin by means of the cut-off function hðrÞ and the augmenta-
tion terms

Pn
i¼1ai giðrÞ. The coefficients ai are adjustable ones

so that the computed result will take the required value. (It
is noted here that the extended pseudo-potential by Teter is,
in origin, not the approach to explicit incorporation of
semi-core states. Its purpose is to improve the transferable
property of the pseudo-potential by keeping the agreement
of the ‘‘chemical-hardness’’ between the pseudo-potential
and all-electron computation.)
In the present VCA case for multi-reference extension, fol-
lowing conditions should be satisfied: the eigenvalue and
the square norm outside the cut-off radius of the second
lowest orbital /VCA

2;l ðrÞ agree with the averaged all-electron
result. These conditions are given as

eAVG
2;l ¼ aeA

nþ1;l þ beB
n0þ1;l; ð6Þ

and
Z 1

rc

/VCA
2;l ðrÞ

���
���2r2dr ¼ a

Z 1

rc

/A
nþ1;lðrÞ

���
���2r2dr

þ b
Z 1

rc

/B
n0þ1;lðrÞ

���
���2r2dr: ð7Þ

The computational steps from (1) to (4) are the same as those in
the original Ramer–Rappe method; the step at (5) is the essential
extension by the present work. In this step, the fine tuning pro-
ceeds in the following way. The conditions to be satisfied are newly
given as:

[I0] The pseudo-potential is readjusted from the screened VCA
pseudo-potential by means of above cut-off functions and
coefficients. In the implementation of the present work,
the functional form is given as

VMRPP
l;ps ðrÞ ¼

Xn

i¼1

ai giðrÞ þ hðr=rcÞVVCA
l;ps ðrÞ þ cl 1� hðr=rcÞð Þ; ð8Þ

where hðrÞ is a cut-off function which is zero at the origin and
becomes unity out of the cut-off radius. giðrÞ are functions
having i–1 nodes, which are unity at the origin and go to zero
with the zero slope at the cut-off radius. This is an extension
of the functional form of the provisional pseudo-potential in
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