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a b s t r a c t

In this study, we focus on the interplay between the honeycomb structure and the crystallographic
orientation. Specifically, the in-plane Young’s moduli of monocrystalline stochastic honeycombs are
calculated by a numerical and an analytical approach. The in-plane Young’s moduli of the honeycombs
were calculated numerically using a solution scheme for the full-field mechanical equilibrium based
on spectral methods and anisotropic crystal elasticity. The analytical approach formulates two alternative
assumptions, i.e. uniform force and uniform strain per strut, considers the elastic anisotropy of the base
material, and depends on the two-variable distribution of the strut length and inclination angle as the
structural parameters characterizing the stochastic honeycombs. The uniform strain assumption agrees
closely with the numerical simulation results and constitutes an improvement compared to analytical
solutions proposed in previous studies.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

This study is inspired by the recent development and investiga-
tions on bulk nanoporous gold (NPG), especially by its applications
as actuators and sensors [1–4]. Due to the large length scale differ-
ence between the sample size (mm to lm) and the ligament size
(nm) [5–7] in addition to the complex cellular structure, the direct
observation of the deformation mechanisms of NPG is challenging.
Though efforts have been made by using transmission electron
microscopy (TEM) and scanning electron microscopy (SEM)
[7–11], comprehensive structure–property relations for NPG are
still not yet established. Hence, numerical modeling can be an
alternative to improve the understanding of the relation between
the cellular structure and its mechanical response upon external
loading.

To model the elastic response of NPG by means of continuum
mechanics, the model morphology needs to be close to the exper-
imental observations, e.g. [12–16]. In those previous studies, the
constitutive description of the materials is isotropic. As exempli-
fied by Jin et al. [7], the mean grain size of NPG is typically orders

of magnitude larger than the ligament size, indicating that an
isotropic description might not be adequate to study NPG.

In this study, we explore the interplay between the cellular
structure and the elastic anisotropy of the base material. Instead
of directly addressing three-dimensional (3D) foams, we focus here
on two-dimensional (2D) honeycombs with the aim at studying
the orientational dependence of the elastic response of monocrys-
talline stochastic honeycombs upon in-plane compression. The
corresponding study on plastic deformation will be presented
and discussed in another publication.

This paper is organized as follows: Section 2 describes the
numerical and analytical approaches, the honeycomb structures,
and the crystallographic orientation of single crystals considered
in this study. Appendix A briefly summarizes the approaches pro-
posed in previous studies [17–19]. Section 3 presents and discusses
the results with a summary given in Section 4.

It should be noted that the surface effect is not considered in
this study. As observed in atomistic simulations and experiments
[20–25], the elastic modulus of a nanowire deviates from that of
the bulk material, when the diameter is less than, roughly
speaking, 100 nm, depending on the material and the crystallo-
graphic orientation. Incorporating surface elasticity into the
continuum framework to study nanoporous materials is discussed
in [26–33].
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2. Methodology

2.1. Numerical approach

2.1.1. Numerical solver and constitutive law
In this study, we use a spectral method approach to solve the

mechanical equilibrium and compatibility conditions as pioneered
by Moulinec and Suquet [34]. This solution strategy overcomes the
well-known limitations of the finite element method (FEM), such
as unfavorable scaling for large problems, the inability to capture
high spatial gradients, and the necessity of meshing. Details on
the implementation of this method can be found in [35].

We assume anisotropic elastic behavior for single crystalline
gold. Non-zero components of its elastic stiffness tensor with cubic
symmetry are C11 ¼ 191 GPa;C12 ¼ 62:0 GPa, and C44 ¼ 42:2 GPa
[36].

2.1.2. Crystallographic orientations
We selected typical texture components of rolled face-centered

cubic (fcc) and body-centered cubic (bcc) crystals as orientations
for the single crystalline gold matrix, i.e. ‘Brass’, ‘Copper’, ‘Cube’,
‘Goss’, ‘Rotated Cube’, and ‘S’. The orientation, termed ‘RZ’, that is
most unstable upon compression in fcc [37] and an arbitrary orien-
tation, termed ‘Less symmetric’, are additionally considered such
that eight different orientations are compared. Table 1 lists details
for all selected crystallographic orientations.

2.1.3. Geometry
Each of four stochastic honeycomb structures was generated

from 200 randomly positioned seed points by periodic Voronoi
tessellation on a 512� 512 grid. The grid spacing can be selected
arbitrarily since anisotropic elasticity is size independent.
A closed-porosity honeycomb with relative density q=q0 � 0:6 is
generated by widening all Voronoi cell edges and classifying them
as solid phase struts of bulk density q0 while the remaining cell
interior is considered void (Fig. 1). No minimum distance between
adjacent seed points is enforced in the Voronoi tessellation.

Fig. 2 presents the resulting distributions of strut length and
strut inclination angle relative to X axis. As expected for stochastic
honeycombs [19] the strut length follows a bimodal distribution.1

The inclination angle is uniformly (randomly) distributed since any
reference direction would be arbitrary with respect to the generated
structure. The distributions of all four honeycombs shown in Fig. 2(a
and b) essentially coincide, implying that the selected number of
Voronoi cells per structure is large enough to be considered statisti-
cally equivalent regarding these two measures. In addition, Fig. 2(c)
reveals that the length and inclination of the struts are uncorrelated,
further demonstrated by their Pearson correlation coefficients rang-
ing from 0.0368 to 0.0872 for the strut length and the inclination
angle of the four honeycomb structures.

2.1.4. Boundary conditions
Periodic boundary conditions are imposed and entail that fluc-

tuations of deformation and stress vanish on average. Compression
along Z is prescribed with mixed (deformation and stress)
boundary conditions in the form of a volume-averaged deforma-
tion gradient tensor (�F) and its corresponding average first
Piola–Kirchhoff stress (�P).

The rigidity of the deformation boundary condition is relaxed in
three steps, termed ‘BC1’ to ‘BC3’ and shown in Table 2. Only the
lateral in-plane normal stress along X becomes zero in BC1. Both
lateral normal stresses along X and Y are set to be zero in BC2.
For BC3, essentially all but the compression normal stress compo-
nent become zero.

The in-plane Young’s modulus is obtained by linearly fitting the
�r33–�e33 curve, where �r33 is the 33-component of the average
CAUCHY stress tensor

�r ¼ �P�FT=det �F ð1Þ

2.2. Analytical approach: uniform force or uniform strain

We follow the simplification of Gibson and Ashby [17] and
Fortes and Ashby [38], i.e., we consider how a vertical force
f ¼ ð00 f Þ displaces the ends of an individual strut as illustrated
in Fig. 3. The local x; y; z strut coordinate system is obtained by
rotating the global X;Y; Z coordinate system with respect to �Y
(or equivalently �y) by 0� 6 h 6 180�. The compliance tensor S
(in Voigt notation) of a strut is defined in its local x; y; z coordinate
system and, hence, will depend on the strut inclination relative to
the fixed single crystal orientation of the honeycomb.

An axial force component f sin h results in a displacement

dx ¼
S11l
wt

f sin h ð2aÞ

along the beam length, with l the length of the strut, w its width,
and t its thickness. The component f sin h also causes a possible
shear displacement

dz;shear ¼
S15l
wt

f sin h ð2bÞ

for non-zero S15 component. The lateral component f cos h, accord-
ing to anisotropic beam theory [39], results in an end-to-end dis-
placement due to bending,

dz;bend ¼
S11l3

12Iy
f cos h ð2cÞ

with the second moment of inertia, Iy ¼ w3t=12, being equal among
all struts since w and t are constant.

The elastic work Wel stored in the honeycomb is taken as sum
over the elastic work in each of N struts assuming the components

Table 1
The eight crystallographic orientations considered in this study. Brass, Copper, Cube,
Goss, Rotated Cube, and S orientations are typical texture components of fcc and bcc
rolling textures. RZ is the orientation which is proven to be the most unstable
orientation upon compression in fcc [37]. In addition, an arbitrary orientation was
selected, and designated as Less symmetric. Euler angles follow Bunge’s notation.
Lattice unit cells are displayed in the lab coordinate system of Fig. 1.

Euler angles/� Miller indices

u1 / u2 kZ kX

Brass 35 45 0 (01 �1) [2 �1 �1]

Copper 90 35 45 (112) [�1 �11]

Cube 0 0 0 (00 �1) [100]

Goss 0 45 0 (01 �1) [100]

Rot. cube 45 0 0 (00 �1) [1 �10]

S 60 32 65

RZ 32 85 85

Less sym. 0 13 71

1 T h e p r o b a b i l i t y d e n s i t y o f t h e s t r u t l e n g t h i s pðlÞ ¼

exp � ðl�lÞ2
2r2

� �
þ exp � ðlþlÞ2

2r2

� �h i
=

ffiffiffiffiffiffiffi
2p
p

r
� �

, where l is the average strut length, and r

is the standard deviation [19]. Above probability density integrates to a value of unity
for non-negative strut lengths, since the sum of the two distributions is symmetric
around l ¼ 0.
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