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A real-space phase field model is developed to investigate the effect of Dzyaloshinsky-Moriya (DM) inter-
action on magnetic vortex in ultrathin ferromagnetic film. Based on the time-dependent Ginzburg-Landau
(TDGL) equation, the phase field model takes into account the DM interaction of magnetizations, which
includes the coupling between the magnetization and magnetization gradient. The governing equations
in the phase field model are solved simultaneously by means of a nonlinear finite elements method, which
can be employed to simulate magnetization vortex without periodic boundary condition. The simulation
results demonstrate that the DM interaction has significant influence on the structure of the magnetiza-
tion vortex. It is found that the DM interaction induces an out-of-plane magnetization on the edge of the
vortex and enlarges the size of the vortex core. The magnitude of the out-of-plane magnetization at the
vortex core and the edge increases with the increase of DM constant. Besides, the handedness of
magnetization vortex also changes when the sign of DM constant changes.
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1. Introduction

Based on its unique structure, the magnetization vortex in a
nanoscale magnet is defined by the polarity and circulation.
Specifically, the magnetization vortex is characterized by nanome-
ter sized central region with the magnetization perpendicular to
the plane (p = £1, up or down) and an in-plane curling magnetiza-
tion (c = 1, counterclockwise or clockwise) [1,2]. It has attracted
numerous attentions during last decades, especially after the find-
ing that the vortex polarity could be manipulated by the in-plane
electrical current [3,4]. The switching property of magnetization
vortex can be exploited for a new kind of memory devices in prac-
tice. In the literature, various experimental and theoretical methods
have been developed to study dynamic properties of magnetization
vortex. Among them, many advanced instruments, such as the mag-
netic force microscopy [5] and time-resolved magnetic X-ray
microscopy [6], are employed to provide a direct observation on
the magnetization vortex. Meanwhile, the micromagnetic model
[7,8] and phase-field model [9] are developed to elucidate the
underlying mechanism of evolution process of magnetization
vortex.

Due to magnetostrictive effect, the stress field can induce the
change of magnetization state at room temperature. However,
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because of the complicated elastic solutions associated with the
arbitrary domain structures in ferromagnetic materials, most of
the micromagnetic models have not taken into account the effect
of inhomogeneous stress although Shu et al. have obtained the
inhomogeneous stress via a modified boundary integral formalism
for two-dimensional cases [10]. To model the temporal evolution
of three-dimensional domain structures of giant magnetostrictive
materials, a phase field model that involves the coupling between
magnetization and strain is proposed by Zhang and Chen [11].
However, the periodic boundary conditions are employed in their
calculations, in which geometry and boundary conditions of the
simulated model are limited to some extent. In our previous work,
a real space phase-field model which includes the magneto-elastic
coupling is developed [9]. By means of nonlinear finite element
method, the model can be applied to simulate the domain evolu-
tion of ferromagnetic materials with arbitrary boundary conditions
and geometries. As demonstrated in the previous work, the model
successfully predicted the evolution of multi-vortices in ferromag-
netic nano-platelets subjected to a normal stress [12], and the
polarity switching of magnetization vortex in ferromagnetic circu-
lar nanodots by a shear strain [13]. In both cases, there are free
boundaries.

When free boundaries appear, a novel intrinsic Dzyaloshinsky-
Moriya (DM) interaction that arises from the spin-orbit coupling
due to the lack of inversion symmetry at surfaces has been found
to play a significant role in the formation of magnetic vortex
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[14-16]. For example, Im et al. demonstrated that the DM interac-
tion is decisive for the asymmetric formation of vortex states [2].
Luo et al. showed that DM interaction would influence the size of
vortex core and induce an out-of-plane magnetization at edge of
the disk [17]. In the present work, we extend previous phase-field
model of ferromagnetic materials [12] by taking into account the
DM interaction, in which the coupling between the magnetization
and magnetization gradient is included. The magnetization distri-
butions of the ferromagnetic vortex in square thin films are simu-
lated with various DM constants.

2. Phase-field method

In the phase-field model of ferromagnetic materials, a vector field
M(r,t) is used as the order parameter to describe the spatial
distribution and temporal evolution of magnetization, where
r = (X1, X2, X3) represents the local position vector and t is time. For
magnetic materials, the DM energy can be written as

wp = D(Aj; + A} + AY), in which D is the DM constant and A is

ik

the so-called Lifshitz invariants [18]. The Lifshitz invariants
Ag- = m;d,m; — m;0,m; denotes the coupling between the magneti-
zation and magnetization gradient[15,19,20],in which d ym; = o m;/
0 X are the spatial derivatives of the component of magnetization
unit vector m; with respect to x,. The magnetization unit vector is
defined as m = M/M; and M; is the magnitude of saturation magne-
tization. The DM energy favors spatially chiral states where the mag-
netization rotates with a fixed turning sense in the plane
perpendicular to the propagation direction. The DM energy can be
expressed as
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In general, there are three possible orientations for the symme-
try axis of uniaxial magnetic material. For each orientation, only
part of the energy expression exits in Eq. (1). In order to distinguish
the DM energy for different orientations of symmetry axis, the
total DM energy in Eq. (1) can be divided into three parts as
follows,

D
Wp1 = M;(MlMs,z — MsMi, + MM, 3 — MiM,3),
s

D
Wpp = %(M3M2‘1 — M;Ms3 ;1 + MM, 3 — MiM,3),
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Wp3 = Mz(MﬂVIzJ — M;Ms; + MiM3, — M3M; ),
s
Wp = Wp1 + Wp3 + Wp3,

where wp1, wp, and wps represent the DM energies when the sym-
metry axis parallel to the x;, x, and x5 directions, respectively. The
DM constants in Eq. (2) can be expressed as D; =D, =D3=D/2. In
addition to the DM energy, other energy terms should also be
included in the phase field model. When the temperature is below
the Curie point, the total free energy density of the magnetic mate-
rial can be given by

E = Emi+ Egra + Epur + Ecou + Emag + Econ + p (3)

where Eqpi, Egra, Epures Ecoups Emag and Ecop, are the magneto-crystalline
anisotropy energy, gradient energy, pure elastic energy, magneto-
elastic coupling energy, magnetic energy, constraint energy, respec-
tively. The total free energy of a cubic ferromagnetic material can be
expressed as
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In which M = +/M? + M? + M3 is the magnitude of magnetiza-

tion vector and A; is the constraint energy constant. In the magne-
tocrystalline anisotropy energy, K; (i=1, 2) and M; are the
magnetocrystalline anisotropy constants and the magnitude of sat-
uration magnetization, respectively. The exchange energy is
induced by the spatially inhomogeneous magnetization, where A,
is the exchange stiffness constant. The coupling energy is expressed
by strain and magnetization, in which 2,99 and /;1; are the magne-
tostrictive constants. For the cubic material, there are three elastic
constants, namely, ¢;1, €12, and c44. The magnetic energy includes
both the external magnetic field energy (if any) and demagnetiza-
tion energy, in which g is the permeability of a vacuum.

The temporal evolution of the magnetization distribution in the
materials is described by the time-dependent Ginzburg-Landau
(TDGL) equation [21,22]

OM(r,t) oF

o L SM(r, ) ()

where L is the kinetic coefficient, F = [, EdV is the total energy of
the ferromagnetic materials. For overdamping cases, the TDGL
equation is not only the simplest continuum model for magnetiza-
tion evolution, but also gives the same evolution process as the LLG
equation. It has been employed to study the domain evolution of
ferromagnetic materials [21]. In the present study, the evolution
speed is slow and the overdamping condition is valid. For simplic-
ity, the TDGL equation is employed, which can be expressed in
the form of partial differential equation as
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Besides, the mechanical equilibrium equation 6—‘;{} (i) =0 that

e
ignores the body force, and the Maxwell’s equation TZ] (fj—ﬁ) =0,
are introduced to describe the evolution of elastic strain and mag-
netic field. A 3D nonlinear finite element method is applied to solve
above three governing equations.

To solve these above partial differential equations with finite
element method, the weak form of the governing equations can
be expressed as
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