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a b s t r a c t

Unlike the description of cracks as sharp surfaces which requires different criteria to predict the onset of
crack propagation, the direction of crack growth, possible crack branching, and the nucleation of new
cracks, the phase field approach provides a holistic description of all these fracture processes. The phase
field order parameter is used to differentiate between broken and undamaged material, and the entire
crack evolution is obtained implicitly by solving the evolution equation of the order parameter which
is coupled to the mechanical field equations. A so called degradation function couples the order param-
eter to the elastic properties of the material in order to model the change in stiffness between fractured
and undamaged material. The nucleation of a new crack in originally undamaged material is preceded by
a localization of the fracture field. Before the onset of this localization the material response of the phase
field fracture model is mainly controlled by the degradation function. However, the degradation function
frequently found in the literature yields a pronounced softening behavior before the onset of fracture
which is not desirable when modeling brittle materials. In this work we discuss the potential of alterna-
tive degradation functions in the context of crack nucleation and propagation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The key objective of fracture mechanics is to predict the evolu-
tion of cracks in structural components under a given loading sce-
nario. In order to model the entire fracture process, a fracture
criterion must be able to predict the onset of the propagation of
pre-existing cracks as well as the nucleation of new fractures in
originally sound material. Additionally, the model must predict
the crack path which requires criteria for the direction of crack
extension and for the bifurcation of cracks.

The conceptual basis of the contemporary theory of brittle frac-
ture was laid in the works of Griffith [1], who for the first time for-
mulated an energetic fracture criterion. According to this criterion,
crack propagation follows from the minimization of the sum of the
elastic energy stored in the bulk material and the energy required
to create new fracture surfaces. However, this criterion is only able
to predict the onset of crack extension along a given crack path.
Additional criteria are needed in order to predict the geometry of
the crack path and the nucleation of new cracks. In the 2D case,
there are numerous criteria available in the literature predicting
different crack paths. Popular criteria are e.g. the maximum hoop
stress criterion [2], the principle of local symmetry according to

[3] and the criterion of maximum energy release [4], only to name
a few. However, no general consensus on which of these theories is
the most adequate has been reached so far. Due to the manifold
possible crack geometries, crack path prediction becomes even
more difficult in 3D scenarios.

Further issues which have not been satisfactorily solved in frac-
ture mechanics are the nucleation of new cracks in the absence of
macroscopic initial cracks, and the transition from the phase of
fracture nucleation to macroscopic crack extension.

Besides the development of physically sound fracture models,
numerical strategies are needed to compute the fracture evolution
and the elastic deformation of complex structures. The finite ele-
ment method (FEM), where the structure is discretized into a set
of elements, is a widely used tool for this purpose. The partial dif-
ferential equations for the unknown field variables are recast into a
finite dimensional set of equations for the values at the element
nodes. Within the elements, the unknown field variables are usu-
ally interpolated from the nodal values by means of continuous
finite element shape functions. Since the displacement field may
have jump discontinuities where the material is broken, cracks
within an element cannot be modeled well by this technique.
Therefore, the finite element mesh needs to be adapted to the
new crack geometry after every progression of fracture if this
ansatz is used, see e.g. [5–7] for configurational force driven
remeshing strategies. An alternative which allows to simulate
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crack growth without adaptive remeshing is the extended finite
element method (X-FEM) [8] where special enriched shape func-
tions are used to model jumps in the displacement field and singu-
larities in the stress field.

Regarding the numerical treatment of fracture a conceptually
different modeling technique has gained importance in the recent
past. So called phase field models, which base on the concepts
introduced in [9], were originally used in [10,11] to model solidifi-
cation processes. Applications of this modeling approach in the
context of fracture mechanics have been introduced and discussed
e.g. in [12–18]. In phase field fracture models, the phase field order
parameter is also called the fracture field. The value 1 is used to
characterize sound material, and 0 indicates fracture. The evolu-
tion of fracture can be regarded as a phase transition problem of
the fracture field. At a fracture surface the order parameter varies
smoothly between the values assigned to the different phases,
avoiding discontinuous jumps. The width of this transition zone
of the order parameter is controlled by a model inherent length
scale. The entire evolution of fracture evolution is obtained implic-
itly by solving the coupled system of equations formed by the evo-
lution equation of the order parameter and the mechanical field
equations. As there are no jump discontinuities in the displace-
ment field using this approach, phase field fracture models can
be implemented very conveniently into standard finite element
software. Standard finite element shape functions can be used
and remeshing is not mandatory in order to simulate the propaga-
tion of fracture. Thus, finite element implementations of phase
field fracture models are very powerful numerical tools to study
topologically complex fracture problems.

If the nucleation of fracture in originally intact material is sim-
ulated with a phase field fracture model, the formation of a crack is
preceded by a localization of the fracture field which is connected
to the loss of stability of the unfractured solution. Before the onset
of this localization process the material response of the phase field
fracture model is mainly controlled by the interplay between the
degradation function, which models the impact of the fracture field
on the elastic properties, and the local part of the phase field frac-
ture energy. During this phase, the quadratic degradation function
which is frequently found in the literature yields a pronounced
degradation of stiffness. However, this is not desirable when mod-
eling brittle materials which are generally assumed to be linear
elastic until the point of fracture. In this work we discuss alterna-
tive degradation functions and their potential to improve the mod-
eling of fracture nucleation in brittle materials. Thus, a special
focus is put on the pre-fracture behavior of the phase field model,
but also the impact of the degradation function in the fractured
state is considered. Also the crucial role of the phase field model’s
inherent length scale in the context of crack nucleation will be
addressed.

The paper is organized as follows. In Section 2 the basic concept
of phase field fracture models is introduced starting with the for-
mulation of an appropriate phase field energy density, which
approximates the elastic and fracture energy of the considered
body in Section 2.1. Three different possible formulations of degra-
dation functions which model the coupling between the mechani-
cal fields and the phase field order parameter are proposed in
Section 2.2 in order to improve the modeling of brittle material
behavior before fracture. In order to provide the theoretical back-
ground a thermodynamically consistent derivation of the evolution
equation of the phase field order parameter is presented in
Section 2.3 and possible formulations of irreversibility constraints
are discussed in Section 2.4. The impact of the choice of the degra-
dation function is studied analytically in a simple 1D setting in
Section 3. The results of numerical finite element simulations of
fracture nucleation using models with different degradation func-
tions are presented in Section 4. The simulations comprise a

reconsideration of the 1D setting and an extension to a more com-
plex 2D scenario. A concluding discussion of the results is given in
Section 5.

2. Formulation of phase field fracture models

2.1. Phase field energy

In a small strain setting, where the infinitesimal strain tensor
e ¼ 1

2 ðr
T uþruÞ is the symmetric part of the displacement gradi-

ent ru, the energy density functional w of a phase field fracture
model is typically of the format

wðe; sÞ ¼ 1
2

gðsÞ þ gð Þe : Ceþ Gc

2cw

wðsÞ
4�
þ �jrsj2

� �
: ð1Þ

The elastic stiffness tensor C and the cracking resistance Gc describe
the material properties. The parameter � has the dimension of a
length and is often referred to as regularization length, since it con-
trols the width of the transition zone of the phase field order
parameter between the broken state s ¼ 0 and the undamaged state
s ¼ 1. However, an alternative interpretation of this parameter in
the context of fracture nucleation will be discussed in Section 3.
The so-called degradation function gðsÞ with gð1Þ ¼ 1 and gð0Þ ¼ 0
models the release of elastic energy

we ¼ 1
2
ðgðsÞ þ gÞe : Ce ð2Þ

if the fracture field s becomes zero. A proper choice of the degrada-
tion function gðsÞ and its impacts will be discussed in Section 2.2.
The positive residual stiffness parameter g� 1 is needed to ensure
numerical stability where gðsÞ ¼ 0.

The function wðsÞ models the local fracture energy. For a given
function wðsÞ, the normalization constant cw must be chosen such

that the integral of wðsÞ=ð4�Þ þ �jrsj2
� �

=ð2cwÞ over the fractured

domain converges to the surface measure of the crack set as
�! 0. There are different formulations of wðsÞ to be found in the
literature, which split in basically two classes: Double well func-
tions of type

wðsÞ ¼ 16s2ð1� sÞ2; ð3Þ

as they are found in [12–15,18], and monotonous functions of the
format

wðsÞ ¼ ð1þ bsÞð1� sÞ ð4Þ

with b 2 ½�1;1�. Most commonly, the convex quadratic function
with b ¼ �1 is used, see e.g. [19–21]. But also the linear case
b ¼ 0 is found e.g. in [22,23]. For illustration, Fig. 1(a) shows plots
of the double well function (3) and Fig. 1(b) shows the function
(4) for distinct values of b. The vertical dotted lines indicate the rel-
evant interval s 2 ½0;1�.

The double well potential (3) provides an energy barrier
between the broken and unbroken state and does therefore natu-
rally model irreversibility of fracture processes to a certain extent.
In contrast, local energy functions of the type (4) do not model irre-
versibility at all and additional constraints for the fracture field
need to be formulated in order to model an irreversible evolution
of fracture. This issue will be discussed in Section 2.3 in the frame-
work of a thermodynamically consistent derivation of the evolu-
tion equation of the fracture field.

Despite the problems concerning irreversibility, in [24] the
authors strongly advocate a monotonous potential. Besides math-
ematical issues, their skepticism towards the usage of a double
well function as a local potential of a phase field fracture model
is based on the fact that the broken (s ¼ 0) and undamaged
(s ¼ 1) phases are equivalent from an energetic point of view.
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