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Previous literature reports that the Monte Carlo Potts (MCP) method can only reproduce the linear rela-
tionship between grain boundary velocity and strain energy driving force expected under ideal grain
growth conditions for small values of strain energy. The exact range of strain energy values for which lin-
earity can be reflected in MCP are not defined. To determine this range, a series of simulations are per-
formed using Monte Carlo Potts in both square 2D and cubic 3D geometries using the Moore
neighborhood. These simulations consider cases in which strain energy is either the sole driving force
for grain growth or coupled with grain boundary curvature. The 2D results show that the strain energy
upper bound is approximately 3.5 non-dimensional units. The 3D simulations show that the relationship
between grain boundary velocity and strain energy is dependent on grain boundary curvature. Grain
boundary curvature can affect the upper bound of the range of strain energy and can impose a lower
bound as well, below which grain growth is discontinuous or stagnate. Both 2D and 3D results are depen-
dent on simulation temperature, with simulation temperature capable of altering the lower and upper
bounds in 3D. Increasing simulation temperature in 3D decreases both the upper and lower linearity
bounds. MCP simulations using simulation temperatures of zero are not suitable for modeling strain

Keywords:

Monte Carlo Potts
Cellular automata
Grain growth
Recrystallization
Modeling
Simulation

energy driving forces, as grain boundary velocity becomes discontinuous with strain energy.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a variety of computational tools available to model
mesoscale microstructural evolution. These tools can be broadly
categorized as either continuum models: phase field models and
vertex models, or discrete models: Monte Carlo Potts (MCP) and
Cellular Automata (CA). Traditionally MCP and CA have been used
to model different microstructural phenomena [1]. MCP is typically
used to model curvature driven grain growth [2,3]| while CA tends
to be preferred to model recrystallization [4,5]. Both MCP and CA
involve discretization of the microstructure into a lattice and sim-
ulate microstructural evolution by switching the grain that a lattice
unit belongs to. The main difference between MCP and CA is the
way they perform the switch. MCP performs lattice unit switching
by evaluating the local system energy of a specific lattice unit and
changing the grain the lattice unit belongs to if it will lower the
system energy. CA performs lattice unit switching by evaluating
whether the neighboring grains have recrystallized and switching
the lattice unit to one of its recrystallized neighbors.
Additionally, MCP lattice switching is stochastic, using a randomly
generated number to determine whether a lattice unit should
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switch, whereas the standard form of CA is deterministic. The other
key difference between the two models is the manner in which the
microstructure is updated. MCP updates the progression of the
microstructural evolution every time a lattice unit changes to
another grain, but CA updates the entire microstructure at once.
An entire sweep of the lattice for MCP is equivalent to a single lat-
tice update for CA. Some models have been developed that blur the
distinction between MCP and CA. These models incorporate the
stochastic nature of MCP into CA, which will allow CA to model
curvature driven grain growth [6].

Utilization of pure MCP [7,8] to model recrystallization has
waned in favor of CA [9,10] including a few MCP/CA [11,12] hybrid
models. The disaffection likely originates from literature reports
indicating that MCP cannot model strain energy driven grain
growth as well as CA [11,1]. An important requirement of compu-
tational models is the ability to reproduce fundamental theory for
a prescribed set of assumptions. For curvature driven grain growth
under idealized conditions, this amounts to a linear relationship
between grain boundary velocity (V) and driving force (P):
V = MP (M is the grain boundary mobility), log-normal grain size
distribution and classical grain growth kinetics: d* —d2 = kt,
where d is the instantaneous average grain diameter, dy is the ini-
tial grain diameter, k is a constant and t is time. For other driving
forces under idealized conditions, there is only the expectation that
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V = MP. The verification of numerical models includes testing their
ability to reproduce these expected outcomes under the same ideal
conditions. The problem with MCP and strain energy driving forces
is that the relationship between grain boundary velocity and strain
energy driving force is nonlinear at large strain energies.
Interestingly, the drop in MCP usage for recrystallization has
occurred despite the lack of a curvature driving force in the stan-
dard form of the CA recrystallization model, or in the case of a
stochastic CA model, a non-proportional relationship between
the switching probability and strain energy [11]. MCP is capable
of reproducing fundamental theory when subjected to curvature
driven grain growth.

Hybrid models have been developed to address the weaknesses
in both MCP and CA models. The work by Rollett and Raabe [11] pro-
poses a hybrid model and simulates a simple static recrystallization
problem to examine its kinetics. The recrystallization problem sim-
ulated involved seeding strain-free nuclei into a uniformly strained
2D microstructure, and allowing these nuclei to grow until the
microstructure fully recrystallized. The kinetics from the simulation
demonstrate that site-saturated Johnson-Mehl-Avrami-Kolmogor
ov (JMAK) [13] kinetics were recovered. The work by Madison
et al. [12] proposes a different version of the MCP/CA hybrid model,
and applies it to a dynamic crystallization problem. In this work a 2D
microstructure continuously and uniformly accumulates strain
energy. Nucleation attempts are made to a fraction of the
microstructure and nucleation is successful if a critical strain energy
value is exceeded. The newly nucleated grains can then grow by
depletion of strain energy. These simulations progress for a set
amount of simulation time. The pertinent information obtained
from these simulations involve the time evolution of grain size and
system energy. Results obtained by Madison and co-workers show
that the grain size and system energy oscillate initially to then reach
steady state. Recrystallization kinetics were determined for this
hybrid model under the aforementioned circumstances and was
found to also agree with JMAK predictions. Both hybrid models gave
JMAK predicted recrystallization kinetics, however JMAK predic-
tions involve homogeneous nucleation and are very idealized.
Matching JMAK predictions under idealized conditions is good for
model verification, but recrystallization is a heterogeneous process
so JMAK kinetics rarely coincide with real materials [9]. Deviating
from the JMAK predictions is a necessity when modeling real mate-
rials. The method to incorporate both MCP and CA in these hybrid
models is to divide the microstructural evolution between MCP
and CA depending on the situation. Recrystallization is governed
completely by the strain energy driving force and is performed by
CA, and grain growth is governed completely by the curvature driv-
ing force and is performed by MCP. The hybrid model proposed by
Rollett and Raabe differentiate recrystallization from grain growth
by comparing the magnitude of the strain energy driving force
against the curvature driving force. Whichever driving force is
greater determines whether CA or MCP is used. Both MCP and CA
processes occur simultaneously. The hybrid model proposed by
Madison et al. performs recrystallization and grain growth sequen-
tially. 100 time steps of CA is performed before a single time step
of MCP. Since the process simulated by Madison et al. is a dynamic
one, there can be multiple waves of recrystallization occurring
simultaneously, which is why they change the CA algorithm to be
based on an energy minimization.

Hybrid MCP/CA models combine the features of each model
that work well, however the two driving forces are still treated
separately. The weakness of the hybrid models is that curvature
and strain energy cannot be considered together to advance the
microstructure’s evolution. This leaves these hybrid models inca-
pable of modeling situations where the two driving forces are in
competition. Such situations include the presence of anisotropic
grain boundary mobility, pinning particles and the involvement

of subgrains during recrystallization [14,15]. These situations are
certainly possible during recrystallization in real engineering
materials and have remained neglected. For situations with driving
force competition, either a new type of hybrid model must be
developed or a further evaluation of MCP is in order.

MCP has been shown to perform well for curvature driven grain
growth simulations. It has also been used for recrystallization sim-
ulation and was reported to yield linear driving forces at low strain
energies, below 1 non-dimensional unit of energy (n.d.) [11].
However, the range of strain energy values for which the linear
relationship is maintained has not been clearly defined in the liter-
ature. In addition, strain energy limitations could vary based on the
lattice geometry and dimension due to the changes in geometry
and the number of possible grain boundary segments associated
to a single lattice unit.

The objective of this work is to investigate the relationship that
strain energy has with grain boundary velocity as predicted by
MCP simulation and to define the range of strain energy values
for which this predicted relationship is linear. This investigation
is conducted in the context of grain growth but, as shown above,
has direct relevance to the simulation of recrystallization dynamics
using MCP.

2. Numerical model

An overview of the Monte Carlo Potts method is provided here
for completeness. Various monographs and books provide detailed
descriptions [16-18]. The MCP approach presented here departs
somewhat from a more classical presentation in that it allows for
strain energy effects. The Monte Carlo Potts method simulates
microstructure development stochastically over a finite discretized
domain composed of lattice units (LU) that are each assigned an
orientation. When two neighboring LU share the same orientation
they are defined as being within the same grain. Otherwise they
are defined as being part of different grains and a grain boundary
exists between them. Grain boundary motion occurs by deciding
whether each LU should change its orientation to that of one of
its neighbors as the domain is swept iteratively. When a LU does
change its orientation to the orientation of its neighbor, then the
grain to which the neighbor LU belongs has grown by one LU.

The decision to change the orientation of the selected LU is
based upon the comparison between a random number # and
the Metropolis probability transition function:

1 AE <0
P= exp(—AT—f) AE>0 1)

where P is the probability of a LU changing orientation, AE is the
change in energy that would result from an orientation change of
the LU considered and T, is the simulation temperature, a
non-zero parameter used to add disorder to the microstructure evo-
lution and avoid numerical artifacts that can develop due to dis-
cretization [19]. This probability transition function was
developed to minimize the system’s energy. If # < P(AE) the new
state is accepted [16].
The energy associated with a single LU is defined by Eq. (2).

Ei=Ui+Y (1-484:9)) 2)

=

where E; is the energy of the selected LU, U; is the strain energy of
the selected LU, N is the number of nearest neighbors, § is the
Kronecker delta function, g; is the orientation of the selected LU
and ¢; is the orientation of one of the nearest neighbors.
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