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a b s t r a c t

The present research work takes advantage of a recently published numerical homogenization imple-
mentation in MATLAB to find the elasticity tensor of a ceramic–metallic composite (CMC) system to be
compared to an experimental data. Numerical homogenization is an efficient way to determine effective
macroscopic properties of a composite material. This technique represents an effective means to model a
two-phase composite. In this work, an extension of a previously published numeric homogenization code
was investigated in order to model the compressive elastic modulus of the ceramic–metallic composites.
The extension to the numerical code makes use of physical micrograph images to accurately describe the
phase distribution of the composite. Multiple micrographs were taken from each sample, to subsequently
better represent the actual microstructure of the composite as a whole. The composites were created
using a binder jet 3D printing technology, where a ceramic precursor material was initially assembled,
followed by a molten metal infiltration process. It was found that the studied numerical homogenization
yielded an elastic modulus approximately 11.5% lower than the experimental data, suggesting a reliable
modeling technique for predicting the elastic tensor of CMCs.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The microstructure and mechanical properties of ceramic–
metallic composites (CMCs) have been extensively studied over
the last 20 years. CMCs can be manufactured through a large vari-
ety of techniques, including reactive metal penetration (RMP) [1],
directed metal oxidation (DIMOX) [2], and pressure assisted infil-
tration [3]. The composition of CMCs can be made based on a wide
variety of ceramic and metal materials. The most commonly stud-
ied CMC system is based on a Al2O3/Al composite which was orig-
inally patented by Breslin [1], who used a RMP process to produce
a co-continuous ceramic–metal composite (C4). In the RMP pro-
cess, a silica ceramic preform is reactively infiltrated with molten
aluminum to create the final composite. A reduction reaction
between the molten aluminum and silica creates the final
Al2O3/Al composite. Typically the ceramic precursor materials are
made by a slip or squeeze casting techniques. These manufacturing
techniques can be limited by the complexity of the part design. In
order to overcome the geometrical constraints associated with the
manufacturing of complex parts, the use of additive manufacturing

seems to be a feasible alternative. Binder jet process is a
layer-by-layer building approach which was originally established
at MIT [4]. In this process, a binder is physically deposited onto an
evenly spread powder bed following the design of a predetermined
CAD model. A fresh layer of powder is then laid on top of the pre-
vious layer and the process is repeated until the design is accom-
plished (see Fig. 1).

After the printing process, the binder is cured in order to harden
and glue the piece together. Subsequently, the binder is burned off
during the sintering cycle. The burning off of the binder creates a
natural porosity in the final part, which prevents the final part
from achieving highly dense parts. Yoo et al. [5] reported that they
were able to achieve a final density of 62.5%, without post process-
ing, for binder jet printed alumina. Although the porosity is not
always a desired feature on bulk ceramics, it may be beneficial
for the creation of infiltrated CMCs. In fact, most of the research
groups have used additive manufacturing to assemble a ceramic
backbone for subsequent metal infiltration, to create a multiphase
composite [6–17]. However, no previous studies on AM for produc-
ing multiphase composites have reported the use of the aforemen-
tioned RMP infiltration technique. This represents an opportunity
to explore the combination of AM with RMP to yield unique inter-
penetrated composites. Hence, the present paper will investigate
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and model the elastic properties of an interpenetrating ceramic–
metal Al2O3/Al composite manufactured by binder jet printing
and infiltrated via RMP, using a numerical homogenization tech-
nique. Here, the predicted elastic properties will be compared to
the experimental data to evaluate the reliability of the aforemen-
tioned technique.

1.1. Modeling of composite materials

There are many models and methods that have been studied to
simulate the physical properties of CMCs and interpenetrating
phase composites (IPCs); such as the Voigt and Reuss bounds
[18], and the rule of mixtures [19]. More unique methods of creat-
ing unit cells have been studied by Wegner and Gibson [20] and
Feng et al. [21]. However, all these previously mentioned methods
do not account for random geometries. Alternatively, a modeling
based on finite element analysis, which divide an interpenetrating
phase composite (IPC) into cubic ‘‘voxels’’, seems to initially repre-
sent a suitable modeling approach, since the phase distribution of
the materials can be assigned with the corresponding properties.
However, such ‘‘voxels’’ approach does not take into account the
randomness of the microstructure [22]. Agarwal et al. [23] used
an effective mesh free method to describe IPCs. Kaminsky and
Kleiber [24] modeled the randomness of an IPC using a two-step
homogenization method. Although some of the methods can
describe an IPC’s material properties accurately, they require a
lot of computing time. On the other hand, Andreassen and
Andreasen [25] have offered a MATLAB code based on a homoge-
nization technique which is computing friendly. Hence, the present
study uses this MATLAB code, with additional modifications to
accurately model the elastic tensor of a 3D printed Al2O3/Al
composite.

1.2. Homogenization background

Materials like composites, solid foams, bone, and ceramic
matrix composites consist of multiple, distinct phases. Each of
these phases has their own individual physical and mechanical
properties, and it is the sum of these phases, that form a heteroge-
neous material. Most heterogeneous materials, CMC’s included,
exhibit a random arrangement of phases throughout its continuum
structure. Prediction of the mechanical properties of these materi-
als can be performed through the micro-mechanics theory. This
typically makes use of a representative volume element (RVE), or
a statistical volume element (SVE). A RVE is the smallest volume
of a structure which still represents the macroscopic properties
of the structure, while a SVE is smallest volume of a structure that
statistically represents the macroscopic properties of the structure
[26,27]. It should be noted that a RVE and SVE are very similar in
theory, where both intend to capture the macroscopic properties,
but only the mechanism differs between them. Additionally, the
authors suggest an addendum to the definition of the RVE; the

RVE is the smallest volume of a structure which contains the
required information under the chosen numeric scheme to repre-
sent the macroscopic properties of the structure. In heterogeneous
materials, forming a RVE for all phases within the continuum is the
process of homogenization. A main benefit of homogenization is
that the physical and the mechanical properties can be determined
analytically without need to test the material. This is especially
important in composites materials, since statistically relevant test-
ing of the numerous variables applicable to composites would be
onerous and expensive.

While there exist many techniques for homogenization of a
multiphase composite, the method of cells, or unit cell method,
and Hashin spheres are two prominent homogenization methods.
Hashin and Shtrikman [28] used a variational approach and multi-
layer spheres to model particles in a multiphase material. These
spheres then form the RVE for this multiphase material. The unit
cell method, depending on which definition is taken, is synony-
mous of the RVE approach, and in practice, the two concepts are
interchangeable. Both of these methods discretize a material into
a periodic repeating structure, and therefore the quality of the
result of homogenization is directly tied to the quality of the
RVE. The authors find that the unit cell approach of Andreassen
and Andreasen [25] to be advantageous due to the ability to incor-
porate micrographs into the homogenization. This allows for the
creation of multiple, but not necessarily unique unit cells, which
will discretize the domain.

According to the theory of homogenization, the macroscopic
elasticity tensor for two distinct periodic phases is given by Eq.
(1) [27];

CH
ijkl ¼

1
jV j

Z
V

Cpqrs e0ðijÞ
pq � eðijÞpq
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where V is the volume of the unit cell, CH
ijkl is the homogenized elas-

ticity tensor, and Cpqrs, which is a function of position, is the local
elasticity tensor. Here, Cpqrs can be obtained by

CpqrsðxÞ ¼ Cmat:1
pqrs bmat:1ðxÞ þ Cmat:2

pqrs bmat:2ðxÞ ð2Þ

where b(x) is an indicator function to determine the phase
(mat.1 = material 1 and mat.2 = material 2) for a given position,

and e0ðijÞ
pq is the macroscopic strain field. Here, eðijÞpq represents the

local strain fields and it is given by

eðijÞpq ¼
1
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Therefore, Eq. (1) can be found by solving the elasticity equation,Z
V

CijpqeijðvÞepqðuklÞdV ¼
Z

V
CijpqeijðvÞe0ðklÞ

pq dV ð4Þ

where v is a virtual displacement within the unit cell, which is cal-
culated by weighted residuals or finite element techniques.
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Fig. 1. Schematic for the binder jet printing process.
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