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a b s t r a c t

Cellular automata modeling is a powerful tool used for simulating complex grain growth phenomena.
However, a computational mesh may give rise to artificial anisotropy, which is a highly undesirable cal-
culational problem. To eliminate this drawback of the approach, we have introduced two new corrections
into a two-dimensional cellular automata algorithm for grain growth. The two-dimensional cellular
automata model built in the framework of the approach developed by Rappaz and Gandin is based on a
combination of the cellular automata and finite difference methods. The simulation results obtained for
the cases of single grain growth and evolution of polycrystalline structure during solidification of alloys
have demonstrated that the proposed corrections enable the mesh anisotropy problem to be solved.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Grain structure formed during solidification of alloys produces a
profound effect on the attainable mechanical and functional prop-
erties of materials and plays a key role in the prediction of their
thermomechanical response to different production processes, like
casting, welding, or additive manufacturing. This is why an under-
standing of the microstructural evolution during solidification is
important for product design. While the development of experi-
mental techniques facilitates a detailed characterization of solidifi-
cation microstructures, it is numerical simulations which provide a
possibility of deriving the dynamic evolution of grain morphology.
With a rapid advance of computer technologies and numerical
solution techniques, the simulation of solidification of alloys has
become an efficient tool of modern metallurgy studies and enables
a large number of factors involved to be examined.

A comprehensive bibliography of the publications relevant to
the subject under study is provided in the work of Boettinger
et al. [1], with special emphasis being placed on numerical tech-
niques. Some of the most popular tools for simulating grain struc-
tures formed during solidification are phase field and cellular
automata (CA) methods described in the works of Steinbach et al.

[2] and Rappaz and Gandin [3], respectively. Both of the
above-mentioned approaches provide precise reproduction of the
features inherent in the microstructural evolution during solidifi-
cation of alloys. A detailed description of the phase field method
can be found elsewhere (see, for example, [2]). It should be noted
that while the phase field method is relatively straightforward to
implement, it takes considerable computing power, and the den-
drite growth simulation is limited to a small region containing only
a few grains [4]. This work focuses on the CA method for simulat-
ing complex grain morphologies, taking into account the nucle-
ation and growth of solidification grains. This approach has
originated from the pioneering work of Rappaz and Gandin [3].
The model has evolved into a CA model coupled with finite ele-
ment (CAFE) [5], finite difference (CAFD) [6,7], finite volume meth-
ods (CAFV) [8], and the like. The CA models have been used for
simulating the processes operating at the meso- (see, for example,
[3,5]) and microscale levels (see, for instance, [9,10]). The mesos-
cale level describes the microstructural features inherent in the
grains of the material, i.e. grain growth is simulated. The micro-
scale level enables complex grain morphology to be described. In
other words, it is the dendrite growth which is simulated here.

The CA-based simulation is not problem-free. Artificial aniso-
tropy is caused by CA square meshes. Grains lose their initial orien-
tations and are aligned with or set at an angle of 45� to the global
axis. Numerous investigations have been performed to eliminate
the loss of the initial grain orientation. Anderson et al. [11] and
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Spittle and Brown [12] were faced with a similar problem, using a
Monte Carlo grain growth algorithm. They tried to remedy the sit-
uation by means of hexagonal meshes rather than of square ones.
Rappaz and Gandin [3] proposed ‘‘a dendrite tip correction’’ to be
solely applied at uniform temperatures. For this reason, a new
procedure was developed by Gandin and Rappaz [13]: a
‘‘two-dimensional (2D) rectangular algorithm’’, as it was called.
This technique can be used for any temperature field, but it is dif-
ficult to extend it to the 3D case. That is why Gandin and Rappaz
[5] built a ‘‘decentred square algorithm’’ which likewise was too
complicated to execute.

As regards the mesoscale grain growth, there are a few variants
or modifications of the CA models for reducing artificial mesh ani-
sotropy. For the most part, the modeling efforts were concentrated
on dendrite growth simulations (see, for example, review [14]).
The currently available mesh anisotropy reduction methods for
dendrite growth not all are applicable to mesoscale grain growth
simulations. It is worth noting that the dendrite growth models
and their modifications developed to reduce the artificial aniso-
tropy require sufficiently high mesh resolution.

To solve the artificial mesh anisotropy problem, Marek [15]
worked out a new method called GARED that includes additional
diffusion to control the grain growth rate. The function introduced
to scale the grain interface velocity depends on a numerical param-
eter u obtained from a finite difference (FD) solution of the diffu-
sion equation and defined at a point. Thus, the computational
domain is characterized by so-called pilot field ui,j which is consid-
ered to be ‘‘a smeared-out version’’ of the cell state field. The
resulting model demonstrates the capability of the method to sim-
ulate the anisotropic growth with a reduced mesh effect. An impor-
tant issue is that a successful reduction of the mesh anisotropy is
attained without introducing any variations into cell capture rules
or front tracking. Since the results [15] were obtained using fairly
high resolution meshes, only early dendrite growth stages were
discussed, and only single dendrite growth was simulated.

Dealing with microscale grain growth simulations,
Beltran-Sanchez and Stefanescu [16] built a CA model wherein a
solution of the mesh anisotropy problem was suggested. The
model minimizes the artificial anisotropy by extending the arc
length of the solid–liquid interface to more than one cell. The
method allows for simulation of dendrites growing in any
preferred direction. The dendrite growth parameters obtained with
the use of the model (for example, secondary dendrite arm spacing,
tip liquid concentration, etc.) were compared with experimental
data or classical Lipton–Glicksman–Kurz (LGK) analytical theory.
However, while early in the dendrite growth the initial preferred
orientation is retained, it changes with time. Reuther and
Rettenmayr [14] believe that with the approach developed by
Beltran-Sanchez and Stefanescu, the mesh anisotropy does affect
the dendrite growth pattern.

Zhan et al. [17] worked out a limited angle method. They used
multi-layer meshes to simulate the grain growth with stochastic

orientations. The method is quite simple to implement, its effi-
ciency is illustrated using single and multiple dendrite growth
with different orientations as examples. A disadvantage of the
approach is that the simulations are time consuming because of
the multi-layer mesh. A tracking neighborhood method was pro-
posed by Zhao et al. [18]. Following the approach, the centers of
the nearest neighbors of the ith cell (nucleus) are considered to
potentially belong to the ith grain depending on the grain growth
orientation. Due to the random grain orientation, the centers of
the neighboring cells deviate from their original positions.

The present work is devoted to a 2D CA model based on the
method developed by Rappaz and Gandin [3] but modified in such
a way as to reduce the mesh anisotropy. The model is used to sim-
ulate single grain growth and formation of polycrystalline struc-
ture during solidification of alloys.

2. Formulation of the model and the features of the numerical
solution

Solidification of alloys in a 2D rectangular domain with an
interface between the liquid and the solid phases is represented
schematically in Fig. 1. The computational domain is initially char-
acterized by a uniform temperature T0 and a uniform composition
C0. The solidification is initiated when the metal temperature T is
below the liquidus temperature TL, and grain nucleation and
growth govern the formation of grain structure. According to
Rappaz and Gandin [3], the final grain structure of the material
obtained in a number of industrial processes, such as welding, cast-
ing, etc., can be adequately described with allowance made for (i)
heterogeneous grain nucleation on the surface and in the bulk of
the melt, (ii) grain growth with preferred orientations which are
generally of the h100i type for cubic metals, and (iii) grain growth
kinetics determined with the use of the model suggested by Kurz
et al. [19]. The shape of dendritic crystals can be approximated
by the cubic form (square form in the case of 2D simulations).

2.1. Heat transfer

The governing equation is of the form:

qcp
@T
@t
¼ r � ðkrTÞ; ð1Þ

where q is the density, cp is the specific heat capacity, and k is the
thermal conductivity.

Boundary conditions of several types can be applied at the walls
of the computational domain [20]. In this work, use is made for the
most part of the boundary conditions of the third type. Here the
convective heat transfer coefficients jl and jr for the left- and
right-hand boundaries are known and we get

x ¼ 0 : �k @T
@x ¼ jlðTel � TÞ; t > 0;jl > 0

x ¼ Nx : �k @T
@x ¼ jrðTer � TÞ; t > 0;jr > 0

; ð2Þ

where Tel and Ter are the environmental temperatures at the left-
and right-hand boundaries, respectively. The boundary conditions
are formulated in a similar way for the top and bottom boundaries,
with jt and jb being the convective heat transfer coefficients. To
solve the heat transfer Eq. (1), use is made of an implicit FD scheme
[20] which provides the first- and second-order accuracy in time
and space, respectively, and is unconditionally stable. Eq. (1) is dis-
cretized using a locally one-dimensional unconditionally stable
scheme developed by Samarskii [21,22].

Fig. 1. Schematic of the computational domain in a 2D solidification problem.
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