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a b s t r a c t

A defect-based model of radiation-induced segregation in binary solid solutions is presented. The model
consists of a set of reaction–diffusion equations governing the space and time evolution of vacancies,
dumbbell interstitials and lattice atoms under irradiation. Irradiation, the mechanism driving evolution,
is represented by stochastic and spatially-resolved defect generation events. A key feature of the model
presented here is that the role of boundaries as defect sinks is ensured by a set of defect–boundary reac-
tion boundary conditions. Defining defect–boundary interactions in this way makes it possible to capture
both segregation and boundary motion simultaneously. The model is tested with Cu–Au solid solution.
Enrichment of Cu and depletion of Au has been observed near the boundaries, in agreement with exper-
imental observations. For a particular dose rate, the amount of segregation after a given period of irradi-
ation has been found to be highest at an intermediate temperature. At lower temperatures, maximum
segregation is observed by lowering the dose rates, and vice versa. The activation barrier for the
defect–surface reactions plays a significant role in segregation near the boundaries. A slight increase in
the sample size is also noticed during the simulations due to rapid migration of interstitials to the surface.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Radiation-induced segregation (RIS) in alloys results in changes
in the chemical environment near extended defects like surfaces
and interfaces, which has important consequences. For instance,
in nuclear reactor, the depletion of Cr near grain boundaries in aus-
tenitic stainless steels (Fe–Cr–Ni alloys) under irradiation is a
mechanism of susceptibility to inter-granular fracture by irradiation-
assisted stress corrosion cracking [1]. RIS is a non-equilibrium phe-
nomenon that also affects the diffusional and clustering behavior
of the defects, thereby influencing almost all the kinetic processes
and material properties in nuclear reactors.

Several models have been proposed to study RIS in concen-
trated alloys based on the concept of inverse Kirkendall effect
(IKE) [2]. These models may be classified into two classes based
on the way diffusion is modeled. The first class of the models
employs a continuum approach to formulate diffusion in the
framework of random alloy theory of Manning [3]. Models by
Wiedersich [4], Marwick [2], Lam and Wiedersich [5], and Perks
and Murphy [6] belong to this category. In Manning’s model, diffu-
sion is based on vacancy mechanism; its extension to systems

under irradiation [2–6], where vacancies and interstitials are pre-
sent in equal proportions, is done in such way that they do not con-
tribute to segregation. With this premise it was difficult to explain
the segregation of various components in Fe–Cr–Ni alloy to the
grain boundaries [7]; the degree of Ni enrichment near the grain
boundaries did not increase when Ni was increased from 15% to
35%, and the degree of Cr depletion was found to be insensitive
to the chromium content. On the contrary, the models in [2–6] pre-
dicted that nickel enrichment or chromium depletion at the grain
boundaries should increase with nickel and chromium concentra-
tions, respectively. This anomaly was later resolved by Murphy
[8] when he proposed a model for multi-component systems under
irradiation in which contribution of the interstitials to RIS was also
considered. Interstitial contribution to RIS was explained by intro-
ducing a coupling between an interstitial and a lattice atom during
the diffusion of dumbbell interstitials. Such a coupling was
observed by conversion of interstitials type via lattice atom medi-
ation. Hashimoto [9] simplified Murphy’s model for a binary sys-
tem, and included change in the dumbbell type reactions in
addition to the dumbbell diffusion. In all the models mentioned
above, the defect and atomic migration barriers are assumed to
be independent of the local environment. Using the method devel-
oped by Grandjean [11], Allen and Was [10] proposed a model in
which the migration barriers were dependent on the local atomic
concentration.
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The other class of models, proposed by Grandjean [11], relies on
a mean-field type treatment of diffusion on a discrete lattice using
rate theory [12]. In this framework, since the description of diffu-
sion is atomistic, the effect of composition and short range order-
ing on segregation is automatically taken care of. The treatment
of interstitials diffusion has been very simplified in this work:
the difference in the migration energies of various interstitial con-
figurations has not been considered. Therefore, the interstitial con-
tribution to RIS is not visible. This model, therefore, may not be
used in systems where irradiation produced interstitials form
dumbbells, and interstitials contribution is important in predicting
overall segregation behavior. However, in a series of articles by
Nastar et al. [13,14], the discrete lattice rate theory has been
extended to the split-interstitial diffusion mechanism to explain
the role of interstitials on radiation-induced segregation.

All the models employing continuum theory of diffusion have
been solved on 1D domain with the boundary condition that the
surface is always maintained at bulk thermal defect concentration.
This is not an issue in discrete lattice theory models, as mentioned
earlier, because in these models not only the surface point defect
concentration is varying with time in accordance with the concen-
tration of alloying components but also its value at equilibrium
does not coincide with the equilibrium bulk value [11,12]. Now
the question arises: should RIS be studied in higher dimensions
or 1D study is sufficient to understand the overall effect of RIS on
materials? In materials with internal defect sinks, e.g., voids, dislo-
cation loops, grain boundaries, etc., RIS affects the chemical envi-
ronment near the defect sinks which leads to alteration in the
evolution (growth and shrinkage) of these sinks. Such microstruc-
tures features inherently have 3D morphologies and to resolve
chemical changes near them, a 3D treatment of RIS is required.
In the case of free surface, studying RIS in higher dimensions
may help capture intricate details of the process such as the role
of the surface motion in RIS, spatial non-uniformity of segregated
species near the surface, and surface roughening due to defect–sur-
face interactions.

Here we propose a model to study RIS near free surfaces in bin-
ary solid solutions. This model applies to materials where
irradiation-produced interstitials form dumbbells. For a binary sys-
tem under irradiation (AB), the model tracks the space and time
evolution of six species: three off-lattice species (AA, BB and AB
dumbbells), and three on-lattice species (A, B lattice atoms, and
vacancy). The dumbbells diffuse via interstitialcy mechanism
[15], whereas vacancies diffuse via vacancy mechanism. The defect
diffusion fluxes are derived using a continuum approach, and the
diffusion of atoms is coupled to that of the defects. The defects also
participate in two types of reactions: recombination of interstitial
dumbbells with vacancies and dumbbell type conversion. Point
defect generation is modeled by collision cascade events. These
events are discrete and stochastic in space and time. In each event,
a random amount of defects is introduced as the final outcome of a
spatially-resolved small cascade: vacancies are distributed in a
bell-shaped profile at the cascade center, whereas interstitials are
distributed in a ring-shaped profile at the cascade periphery. The
evolution of all the species is tracked by solving a system of cou-
pled non-linear reaction–diffusion equations. The role of the sur-
face as a defect sink has been ensured by a reaction boundary
condition, which quantifies the rate of reaction of defects with
the surface. The surface motion is estimated by invoking mass bal-
ance across the surface. The model has been employed to study RIS
in Cu–Au solid solution in 2D (solution in 3D is straightforward). In
addition to being able to reproduce essential trends of RIS in Cu–Au
solid solution presented elsewhere by other authors [9], this model
has been able to provide additional insights into the RIS process in
general and its dependence on the surface motion in particular.

In Section 2, we present the reaction–diffusion model [19],
including the reaction boundary conditions. A discussion of the
numerical scheme adopted for approximating the model equations
with a moving boundary follows in Section 3. Section 4 includes
the model results describing segregation and defect dynamics near
the free surfaces in Au–10%Cu solid solution under irradiation.
Conclusions are drawn in Section 5.

2. Radiation-induced segregation model development

2.1. Model equations

In a concentrated binary solid solution, AB, subjected to irradi-
ation, we focus mainly on the defect dynamics, while changes in
the local concentration of the alloying components follow from
the processes of defect generation, diffusion and reactions. Since
defects are always present in dilute concentrations, even under
irradiation, the effect of their interaction on the overall response
of the system may be safely discounted, and as such a Fickian treat-
ment of the diffusion becomes equivalent to a chemical one. For
this treatment to be precise, however, the effect of the local com-
position on the diffusion kinetics of point defects must be taken
into consideration, which we do not consider here due to a lack
of atomistic data. There are six species in the model: three types
of dumbbell interstitials (AA, BB and AB), vacancy, A and B lattice
atoms. The defects are assumed to be sufficiently mobile in the
temperature range considered here. The dumbbell interstitials dif-
fuse via interstitialcy mechanism [15], whereas vacancies diffuse
via vacancy mechanism. Diffusion of the atoms is coupled to the
diffusion of defects. In addition to long-range diffusion, defects also
participate in two types of reactions: a dumbbell interstitial may
recombine with a vacancy to give rise to two lattice atoms, and
it may also react with a lattice atom to undergo a change in the
dumbbell type reaction. Evolution of all the species is governed
by a reaction–diffusion type dynamics with stochastic,

spatially-resolved defect generation term bS.
The governing equations have the following form:
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where Ji ¼
P

kDikrCk and Ri are the flux and reaction terms of ith
species (i, k = AA, BB, AB, V, A, B), respectively, Dik is a M �M matrix
of concentration-dependent diffusion coefficients, M is the number
of species in the model, and Ck is the fractional concentration of kth
species; Q represents change in the dumbbell type reaction; X is
atomic volume. All the terms in the right hand side of the above
Eqs. ((1a)–(1f)) have been derived elsewhere [19]. The stochastic

nature of the Ŝ terms renders the partial differential equation sys-
tem above stochastic.
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