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a b s t r a c t

Computational intelligence based modeling and optimization techniques are employed primarily to
investigate the role of the composition and processing parameters on the mechanical properties of API
grade microalloyed pipeline steel and then to design steel having improved performance in respect to
its strength, impact toughness and ductility. Artificial Neural Network (ANN) models, capable of predic-
tion and diagnosis in non-linear and complex systems, are used to obtain the relationship of composition
and processing parameters with said mechanical properties. Then the models are used as objective func-
tions for the multi-objective genetic algorithms for evolving the tradeoffs between the conflicting objec-
tives of achieving improved strength, ductility and impact toughness. The Pareto optimal solutions are
analyzed successfully to study the role of various parameters for designing pipeline steel with such
improved performance.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

A large quantity of steel products are being used in the oil and
natural gas sector for the production, transportation as well as
storage purpose [1]. With the increasing industrial growth and
upgraded livelihood of human beings, consumption of petroleum
and natural gas has increased considerably for the past few years
and it has been increasing continuously [2]. For the last 40 years,
due to evolution of improved metallurgical practices and manufac-
turing techniques there is a demand on higher strength steels for
the pipe manufacturing [3]. Along with the higher strength, the
most stringent requirement for these steels grades are higher
toughness at lower temperatures; which is specifically required
for places like Siberia, Alaska as well as at the sea beds which face
the extreme situation of operating conditions [4]. Higher strength
and higher toughness of the line pipe steels will enable not only
high operating pressure leading to economically favoured trans-
portation but also higher safety in pipeline operation.

Ultrahigh strength low carbon microalloyed steels (Ti, Nb, V)
have been developed for linepipe application considering the
extreme conditions prevailed across the globe. These steels have
microstructural constituents which provide an outstanding

combination of strength and toughness along with good weldabil-
ity, resistance to corrosion; lower amount of alloying elements in
these steels make them cost effective too [5–8]. To achieve the
desired microstructural constituents, these microalloyed steels
have been thermomechanically processed and thus the required
mechanical properties [9–11]. It is well known that to achieve
the desired microstructural features, the thermomechanical pro-
cessing employed has to be controlled through several processing
parameters; namely, the slab reheating temperatures, the finish
rolling temperatures and the cooling rate [12].

In case of thermo mechanically controlled processed (TMCP)
low carbon microalloyed steels, superior strengths are achieved
by modifying the microstructure consisting of low temperature
transformation products i.e. acicular ferrite along with precip-
itation hardening, but the impact toughness is not satisfactory.
As toughness of steel could be improved by achieving a good bal-
ance between strength and ductility, designing of this genre of
microalloyed steel with an optimum combination of strength, duc-
tility and toughness can be approached computationally.
Conflicting objectives of this kind can be approached by multi-ob-
jective optimization [13] using genetic algorithm [14], which is
found to be effective for dealing such materials problems success-
fully by the previous workers [15–17]. In case of multiple objec-
tives, if they are conflicting in nature, the optimization does not
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lead to any single solution [18]. Instead it generates multiple solu-
tions, known as Pareto front, which represent the best possible
compromise between the objectives. As no ready model for
strength and toughness of such steels are available, it was neces-
sary to develop suitable mathematical models, which can be used
as objective functions for the above optimization study. Due to
highly non-linear and complex relationship between the composi-
tion and process parameters along with dynamical microstructural
feature, developing a mathematical model to describe the
composition–process–structure–property correlation in a steel
system like the present case is practically impossible. ANN models
[19] have the capability to develop non-linear correlations
between the variables of the system from data. Previous workers
have successfully used ANN models to describe such complex steel
systems [20,21]. In the present work the developed ANN models
are also used to find the role of the variables on the final properties
of the steels. The Pareto solutions, developed from multiobjective
genetic algorithm study using the ANN models as the objective
functions, are also used for post-optimization analyses.

2. Database

Around 260 data were collected from the various publications
and patents on API grade pipeline steels [22–44]. The alloy
composition and the TMCP parameters of the micro-alloyed pipe-
line steel have been taken as input parameters, the yield strength
(YS), tensile strength (UTS), percentage elongation (%El) and
impact energy (IE) are designated as the output variables, and
are listed in Table 1. Within the alloy chemistry, the concentrations
of elements like carbon, manganese, silicon, aluminum, niobium,
titanium, boron, sulfur, phosphorous and nitrogen are considered.
The inputs and outputs are normalized within the range of �1 to
1 using the following equation

XN ¼
2ðX � XminÞ
ðXmax � XminÞ

� 1

where XN represent the normalized value of variable X, where Xmax

and Xmin are respectively the maximum and minimum values of the
variable.

3. Computational process

3.1. Artificial Neural Network (ANN)

Artificial Neural Network is a computational model that is
inspired by biologically human brain function. ANN models per-
form an input–output mapping using a set of interconnected sim-
ple processing nodes or neurons. Data enter the network through
the input units called input layer; those are then fed forward
through the hidden layer in the middle to emerge from the output
layer on the right. Minimization of the error/deviation between the
observed and the predicted value is the main aim of this modeling.
In the present work supervised multilayered feed forward net-
works are used, which are trained with scaled conjugate gradient
algorithms [19]. The input layer consists of fourteenth composi-
tional variables and six process variables and the four property
variables are taken as output nodes. As usual there is a hidden
layer between the inputs and outputs. The inputs (Xi) are multi-
plied by weights (Wji), which are summed and added to a bias
value (hji) to form a hidden node (hj). The summation is then oper-
ated by a highly non-linear transfer function (f). The transfer func-
tion used here is tanh. The operation can be written as

hj ¼ f ðRW jiXi þ hjiÞ ð1Þ

The number of hidden nodes in the hidden layer is varied to find
the suitable network architecture. Hidden node values are multi-
plied with weights, summed up and added to a bias to constitute
the output nodes (Y), and can be written as:

Y ¼ ðRW jhj þ h0Þ ð2Þ

where wj and h0 are the weights and the bias. The difference
between the predicted and actual output is treated as the error,
which is back propagated to regulate the weights and biases, known
as training or learning of the network. In here separate ANN models
have been generated for UTS, YS, %El and IE which were taken as the
output. For the four different models the architectures of the net-
works are selected based on the predictability of the model. The
final models for each outputs are chosen from several models with
varying number of hidden nodes, varying between 5 and 40 in a sin-
gle hidden layer. The best scatter plots for the target and achieved
output of the trained ANN models are shown in Fig. 1 and the
scatter plots are evolved having hidden nodes for YS is 11, UTS is
28, %EL is 25 and IE is 21.

3.2. Genetic algorithm and multi-objective optimization

Genetic algorithms (GAs) (or, more widely, evolutionary algo-
rithms) are non-linear search and optimization methods inspired
by the biological processes of natural selection and survival of
the fittest [14]. In genetic algorithms a population containing some
randomly initiated individuals (chromosomes), each representing
a possible solution, is used in the first generation. In the next step
a simulated evolution of the population is occurred and a selection
operation is done on the population for the survival of the fittest.
Next after selection, recombination through crossover followed
by a mutation process is occurred to produce the offspring.
Finally after these processes a new generation is created having
better individuals. The simulation is stopped when a target is
reached or after the decided number of iterations.

In presence of multiple conflicting objectives, instead of unique
global optimum, a set of solutions known as the Pareto set [13] are
generated. As per the definition, no solution is possible to exist
having at least the same strength as some member of the Pareto
set, and at the same time showing a better Impact Energy. Thus
Pareto set propose several equivalent optimum solutions, out of

Table 1
The minimum, maximum, average value and standard deviation of the input
parameters.

Variables Minimum Maximum Average Standard
deviation

C (wt%) 0.016 0.12 0.0574 0.0163
Si (wt%) 0.02 0.62 0.242 0.0963
Mn (wt%) 0.61 3.00 1.912 0.4413
S (wt%) 0.00003 0.0072 0.0013 0.0011
P (wt%) 0.0003 0.028 0.0088 0.0052
Al (wt%) 0 0.086 0.022 0.0157
N (wt%) 0 0.025 0.003 0.0026
Ti (wt%) 0.001 0.036 0.010 0.0075
V (wt%) 0 0.13 0.031 0.0382
Nb (wt%) 0 0.11 0.026 0.0260
Cu (wt%) 0 0.64 0.113 0.0134
Ni (wt%) 0 1.32 0.207 0.2881
Cr (wt%) 0 0.54 0.177 0.1663
Mo (wt%) 0 0.81 0.361 0.2550
Reheating temp (�C) 950 1300 1111.007 64.4779
Start rolling temp

(�C)
810 1250 1041.841 67.6251

Finish rolling temp
(�C)

698 1006 868.042 69.7742

Cooling start temp
(�C)

680 990 833.359 71.8993

Cooling finish temp
(�C)

150 764 521.795 104.8106

Cooling rate (�C/S) 1 62 21.915 10.6023
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