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a b s t r a c t

As the orientation of an individual crystal is constant in solid and diffusive interface layer, a sharp inter-
face model can be coupled to calculate the orientation in phase-field simulation of polycrystalline
growth. Here, a two-dimensional phase-field model in combination with the front-tracking method is
provided for simulating polycrystalline growth during solidification. In this model, the quantitative
phase-field formulations for slow solidification of dilute binary alloys are employed to describe the
dynamical evolution of diffusive solid–liquid interface while the front-tracking method is utilized to track
the spatial dependent orientation of each grain. Because of the high computing efficiency that is resulted
from only one order parameter used to depict the phase transformation during solidification, the model
overcomes the disadvantage of reported phase-field approaches for polycrystalline growth. The built
model was firstly solved to simulate a free equiaxed dendrite with different orientations growing from
undercooled melt for benchmarking. The comparison results indicate that the model is able to compute
the orientation exactly. Secondly, the model was extended to simulate the solidification with many
equiaxed dendrites. The growth behaviors of the simulated crystals were characterized and analyzed,
which demonstrate that the model is feasible to quantitatively and efficiently predict growth dynamics
of crystals in a large number and scale during solidification of alloys.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

As polycrystalline materials that are composed of an abundance
of randomly oriented crystals in microscopic scale exhibit isotropic
properties, polycrystal is the most common grain feature in engi-
neering structural materials. The shape, size and composition dis-
tribution of grains determine the mechanical strength, fatigue
behavior and some other relevant service properties of materials.
Controlling the crystalline growing morphology from melt at the
solidification stage is always important to match the required
microstructures and composition distribution for engineering
alloys. By the aid of computer numerical simulation of crystal
growth during solidification, tremendous advancements on the
dendritic crystal growth dynamics and the underlying physical
mechanism have been achieved up to date. These numerical
approaches, including front-tracking [1–3], cellular automaton
[4–9] methods based on the sharp interface model and the
phase-field method [10–16] based on the diffusive interface model,
have been well developed and widely used in simulations on den-
dritic crystal growth. Due to the negligence of detailed description

of the interface layer between solid and liquid, simulations using
the sharp interface methods are usually implemented more effi-
ciently than the diffusive interface approach. Calculating polycrys-
talline growth with plenty of crystals in a relative large scale of
microstructure or even process-scale is thus available in solidifica-
tion and casting process. However, quantitative description of the
interface morphology and moving dynamics is always a tough
issue in the simulations of complex dendritic growth for the sharp
interface methods. In contrast, it is very convenient for the phase-
field model to handle the complicate interfacial physics and geo-
metric topology, which results in the model being particularly
prone to capturing the morphological characteristics associated
with dendrite growth.

Yet, the simulated number of grains and the scale of dimension
are strictly restricted in the diffusive interface scheme owing to the
consideration of the finite width of interface. In the phase-field
model, an order parameter / is introduced to dictate phases, which
changes continuously over the thin diffusive interface layer but
remains constant within the bulk phases, such as 0 representing
liquid and 1 representing solid. The parameter / which evolves
with time, is governed by a partial differential equation in the
entire simulation domain, needless explicitly to distinguish
between solid and liquid. Because of this treatment in mathematics
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to deal with interface dynamics, the phase-field model has cur-
rently emerged as a powerful and quantitative method of choice
to simulate dendritic crystal growth during solidification.
However, as the width of the interfacial layer is several orders of
magnitude smaller than the size of the simulated grain structure
or the scale of diffusion field, the computing efficiency of the model
is extremely low.

The low computing efficiency of the phase-field model is
exaggerated in the situation of coping with polycrystalline growth.
To be capable of simulating distribution of either different phases
or grains with different orientations, the so-called multi-phase
field model has been proposed for solidification and solid-state
grain growth [17–23]. Each grain or phase is defined with an order
parameter /i to distinct from other grains or phases or both. To
model the polycrystalline growth during solidification, it assumes
in an individual solid grain i, /i = 1, and for all other grains at this
location the parameter /j = 0 (j – i). Hence, at any point of the sim-
ulation domain with N grains, the spatial distribution of grains or
phases can be described by a set of order parameters (/1, /2, /3,
. . ., /N) [21,22,24]. The evolution with time and space of each order
parameter is governed by a partial differential equation, which is
similar to the model of single phase or crystal growth. The tough
problem—low computing efficiency—becomes more stubborn
when computing polycrystalline growing process where at least
N partial differential equations are solved simultaneously.
Consequently, quantitative simulation of large numbers of
equiaxed dendritic growth is a great challenge, in particular for
solidification crystal growth with various orientations. In order to
simulate polycrystalline growth efficiently, another vector-valued
phase-field model for crystallization of polycrystalline material
has been developed by Kobayashi et al. [11,25,26]. In this model
an external variable h is used to describe the grain orientation,
which allows simulations of solidification, grain growth and grain
rotation. Nevertheless, h is obtained by solving a time-dependent
partial differential equation, which is indeed a step function that
has a constant value inside grains and varies sharply at the grain
or phase boundaries. Due to such feature of the orientation dis-
tribution, the equation specifies a singular diffusivity problem
and renders a thorny trouble for numerical calculation. Another
difficulty of this model in quantitative simulation of multi-grain
growth is the uncertainty of the orientation mobility in the h evo-
lution equation.

In the most widely used multi-phase field model [21,22,24], the
orientation of a grain is treated as a constant value in the solid
crystal and the diffusive interfacial layer, hence it can be described
with the sharp interface model. This simplified treatment of
orientation is able to lower the calculation cost because the sharp
interface model always has a high computing efficiency in tackling
polycrystalline growth [27–29]. In this work, the front-tracking
procedure is therefore integrated into the quantitative phase-field
model [15] to govern the variation of orientation of each grain. A
scalar variable h whose temporal and spatial evolutions are tracked
in advance using the front-tracking algorithm, is introduced to
describe the orientations of all grains. The tracking of orientation
depends on the local distribution of order parameter, therefore
the solid growth dynamics are still controlled by the phase-field
formulations. Details of the computational approach used in the
tracking of solidification boundaries are available elsewhere
[1,3,29–31]. It should be noticed that the orientation contribution
to the free energy which represents the excess free energy due to
inhomogeneity of crystal orientation in space [32] is neglected
because of the simulation just focusing on the solidification stage.
This part of free energy is in particular important and necessitated
to be considered when two crystals touch each other and start to
coarsen by migration of grain boundaries.

In this paper, the proposed model was firstly applied to simu-
late a single free dendritic crystal with different orientations grow-
ing from undercooled melt. The model was solved by the finite
element method on an adaptive mesh. The simulated results were
compared to the published data to benchmark the accuracy of the
suggested model on handling orientation calculation for polycrys-
talline growth. Secondly, the simulation of a number of crystals
with different orientations growing from melt was performed
using the built phase-field model. The dynamics involving poly-
crystalline growth were characterized and then analyzed
theoretically.

2. Numerical models and implementations

2.1. The quantitative phase-field model of polycrystalline growth

For slow solidification of dilute binary alloys, the quantitative
phase-field model proposed by Karma [15] is used to describe
the motion of solid–liquid interface. The model can be adopted
to simulate crystallization with the interfacial width smaller than
the thickness of the diffusion boundary layer or the radii of den-
drite tips but much larger than its physical width. The solute
antitrapping current is included into the model to eliminate the
interface stretching and surface diffusion and to guarantee the
local chemical equilibrium at the interface. The comparison of
the simulated initial transient stage of the directional solidification
of Al–Cu alloy with in situ and real-time observation has recently
demonstrated that the model could reflect the solidification
dynamics quantitatively. To keep consistent with the Karma model
[15], in this paper, the order parameter w is used to represent the
different phases, that is taking w = 1 and w = �1 as solid and liquid,
respectively. The governing equations are as follows:
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where x, y are the horizontal and vertical axes, respectively, W0 the
interface width, s0 the dimensionless scale of time and u = un � h,
un = arctan(wy/wx), is the angle between the normal to the inter-
face pointing to the liquid and x the horizontal direction, h is
the orientation. U is the dimensionless solute concentration,

U ¼ 2c=cl0�½1þk�ð1�kÞw�
ð1�kÞ½1þk�ð1�kÞw� with cl0 the equilibrium concentration in the liq-

uid at a fixed temperature T0. The parameters k, n and q(w) are set as
k = a1n, n ¼ W0

d0
, q(w) = (1 � w)/2. The chemical capillary length is

d0 ¼ cTm
Lm jml jcl0ð1�kÞ with ml the liquidus slope and k the solute partition

coefficient, which are taken as constant values, c the surface ten-
sion, Tm the melting point of pure substance and Lm the latent heat.
For simplicity, the usual choice of fourfold anisotropy of surface
energy is adopted in the phase-field model, a(u) = 1 + e4cos4u,
a0(u) = �4e4sin4u. The coefficient e4 is the fourfold anisotropy
strength of the solid–liquid interfacial energy. As the growth rate
of solidification front is not high, the interface kinetic effects are
avoided in the model, so that the additional constraint is imposed
in the solute conservation equation: D = a1a2nW0

2/s0, a1 = 0.8839
and a2 = 0.6267 as derived by Karma and Rappel [33]. The solute
anti-trapping current in Eq. (2) reads [15]
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