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a b s t r a c t

A new potential for the iron–chromium (Fe–Cr) alloy system was optimized for the embedded-atom
method (EAM) within the two-band model (TBM) extension. In contrast to previous works, free model
parameters are predominantly adapted to available experimental high-temperature data of the mixing
enthalpy. As a major improvement, the metastable a=a0 miscibility gap is accurately described in agree-
ment with experimental data and a recent CALPHAD parametrization. The potential was also fitted to
obtain an enriched solubility for chromium atoms in an iron matrix at 0 K, as it is predicted by several
ab initio calculations. Furthermore, it was benchmarked against phonon excess entropies at 300 K and
1600 K demonstrating good agreement with respective results of inelastic neutron scattering.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The iron–chromium (Fe–Cr) alloy system is of great technologi-
cal interest since it is the basis of stainless steels [1] and a promis-
ing candidate for fusion or fission reactors and spallation neutron
sources [2]. It is also one of the rare systems for which particular
properties of triple junctions were measured [3]. Thus, it is impor-
tant to predict its properties by means of theoretical calculations.
Density functional theory (DFT) is not capable of calculating
extended microstructural features such as grain boundaries, triple
junctions, or even impact collision cascades which comprise sev-
eral thousands to millions of atoms. For these cases, molecular
dynamics (MD) or Monte Carlo (MC) simulations are very helpful
tools [4]. The main input of such simulations is an appropriate
(many-body) interatomic interaction which has to be designed to
model the alloy realistically. Prior attempts of deriving an inter-
atomic potential for Fe–Cr alloys concentrated on the reproduction
of theoretical DFT data of the mixing enthalpy [5,6]. However, as
different approximations for the exchange correlation functional
produce already a significant variation of results [7–11], it is not
clear which DFT data should be used as a correct reference. In this
work, we therefore follow a different approach: instead of using
target values from DFT calculations, we predominantly adapt the

potential to high-temperature experimental data of the mixing
enthalpy [12–14]. It turns out that in this way, an appropriate
description of the important metastable a=a0 phase equilibrium
with the embedded-atom method (EAM) is obtained. In particular,
the critical temperature of the miscibility gap is matched with high
accuracy according to experimental data [15–17] and the general
shape of the miscibility gap at lower temperatures is predicted in
good agreement with experimental phase diagrams and theoretical
expectations [11,18].

Our report is organized as follows: In Section 2, we give a
description of the EAM formalism and the methods applied here
for the calculation of phase diagrams. Then, in Section 3, we briefly
discuss the Fe–Cr potentials previously derived in literature and
show their respective phase diagrams in comparison with experi-
mental data and CALPHAD evaluations. In Section 4, we optimize
the parametrization of our new potential and explicitly demon-
strate that fitting the mixing enthalpy to DFT data results in an
inappropriate phase diagram, while adapting to experimental data
yields a description of the metastable miscibility gap with
comparably high accuracy. We also present excess vibrational
entropies calculated by our new EAM potential which are found
to be in good agreement with experimental data.

We want to emphasize that all calculations, experimental data,
and CALPHAD evaluations presented in this work are restricted to
the metastable a=a0 phases since the formation of the r phase is
very slow [19] and usually kinetically suppressed by the cooling

http://dx.doi.org/10.1016/j.commatsci.2015.03.047
0927-0256/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: Sebastian.Eich@imw.uni-stuttgart.de (S.M. Eich).

Computational Materials Science 104 (2015) 185–192

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2015.03.047&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2015.03.047
mailto:Sebastian.Eich@imw.uni-stuttgart.de
http://dx.doi.org/10.1016/j.commatsci.2015.03.047
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


rates applied in experiments. For the actual fitting procedure, only
direct interaction between iron and chromium was taken into
account, while the potentials for pure elements were taken from
literature [5,20].

2. Methodology

2.1. Formalism

For a solid consisting of N atoms, the total EAM [21,22] energy is
given by

Utot ¼
1
2

XN

i¼1

XN

j¼1
j – i

Vtitj
ðrijÞ þ

XN

i¼1

Fti
�qið Þ; ð1Þ

where Vtitj
ðrijÞ is the pair interaction function between atoms i and j

of type ti and tj at distance rij ¼ ~rj �~ri

�� �� and Fti
�qið Þ is the embedding

function of type ti at atomic site i with a local electron density of �qi.
The latter is generated by superposition of the electron densities of
all surrounding atoms under consideration of their respective type
tj:
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It has been shown that this EAM formalism is not capable of
reproducing a change of sign in the mixing enthalpy [23–25].
Since exactly this feature is important in the Fe–Cr system, the
so-called two-band model (TBM) extension has been proposed
[26,27] to receive a more realistic description:
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A second embedding function has been added here. This may be
interpreted as the particular impact of a second electron band.
However, since the detailed physical justification is difficult, it is
better considered as a formal concept to take into account the sec-
ond order influence of the central atom on the local electron inten-
sity. Nevertheless, we will designate in the following the two terms
as contributions of the d- and s-electrons. It should be noted that
the single electron contributions of the s-electron density �qs

i need
to be defined in a more general way to allow for the desired change
of sign of the mixing enthalpy:

�qs
i ¼

XN

j¼1
j – i

qs
ti tj
ðrijÞ; ð4Þ

i.e., the single s-electron density depends both on the type of the
respective neighbor atom tj and the type of the central atom ti.
Conventionally, it is assumed that atomic pairs of the same type
do not contribute to the total s-electron density:

qs
ti tj
ðrijÞ ¼ 0 for ti ¼ tj; ð5Þ

while unlike pairs also fulfill the symmetry relation

qs
ti tj
ðrijÞ ¼ qs

tjti
ðrjiÞ: ð6Þ

This convenient choice has the important advantage that pre-
viously optimized EAM potentials of pure elements can be further
used without any modification when a general potential for an
alloy should be constructed. So within the TBM, the only additional
functions to model the binary AB alloy are the pair interaction
function VAB for unlike atomic species, the two s-embedding func-
tions Fs

A and Fs
B, respectively, and the s-electron density qs

AB. All
other contributions are already known from the pure components.

2.1.1. Effective pair format
In the standard EAM formalism, an effective pair format was

introduced [28] which allows a straight forward comparison of dif-
ferent potentials. The total energy, Eq. (1), is invariant under the
transformationeF ð�qÞ ¼ Fð�qÞ � k�qeV ðrÞ ¼ VðrÞ þ 2kqðrÞ; k 2 R:

ð7Þ

Thus, by setting

k :¼ dFð�qÞ
d�q

����
�q¼�q0

¼ F 0ð�q0Þ; ð8Þ

the derivative of the embedding function vanishes for the equilib-
rium electron density �q0. Furthermore, the equilibrium electron
density is usually fixed to unity which is easily achieved by proper
inverse scaling of the electron density and the argument of the
embedding function.

Owing to the specific formulation of the TBM, we can define a
similar effective pair format for the interaction between unlike
species as well. For comparison of different potentials, we consider
a statically ordered A0:5B0:5 alloy (although it may not be energeti-
cally favored as in the case of Fe–Cr). Required by Eq. (6), the s-
electron density is the same at every atomic equilibrium site of
the ordered alloy so that all derivatives of the s-embedding func-
tions vanish after transformation. The entire additional con-
tribution stemming from interaction between unlike species is
then simply given by
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N
2
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where the prime indicates that only interactions between unlike
species are taken into account. It can be easily proven that the fol-
lowing transformation holds for the TBM:eF s

i ð�qsÞ ¼ Fs
i ð�qsÞ � ki �qseV ABðrÞ ¼ VABðrÞ þ ðkA þ kBÞqs

ABðrÞ; ki 2 R:
ð10Þ

Again, by defining

ki :¼ dFs
i ð�qsÞ

d�qs

����
�qs¼�qs

0

; ð11Þ

the derivatives of the s-embedding functions vanish for the trans-
formed potentials in equilibrium. We also rescale the s-electron
density qs

AB so that the total s-electron density �qs
0 becomes equal

to unity for the given structure.

2.2. Calculation of phase diagrams

In order to calculate binary phase diagrams for a given inter-
atomic potential, MC simulations are carried out in the constant
ðMlNpTÞ semi-grandcanonical ensemble. For a cubic box size with
volume V and length L (dV ¼ 3L2dL) and using scaled particle coordi-
nates within that box (d~ri ¼ L3d~si), the partition function is given by

ZlA ;lB ;N;p;Tðf~sig; c; LÞ ¼
3

K3N
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expðblANÞ

�
X
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Z 1

0

Z 1

0
dc dLdN~s

� e�bðUðf~sigÞþpL3�NcMlÞþð3N�1Þ ln Lþ3Nc
2 ln

mB
mA ; ð12Þ

in which the independent variables are the scaled particle positions
f~sig within the simulation box, the concentration c of component B,
and the cubic box length L. The prefactor is extracted for
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