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a b s t r a c t

Multi-scale spin dynamics of systems of nanomagnets is investigated by numerical simulation using par-
allel algorithms. A FORTRAN program was developed using an application programming interface
OpenMP. The parallel code provides following areas of research: study of the possibility of regulation
time of switching of magnetization of the nanostructure; study of the role of nanocrystal geometry of
coherent relaxation of 1-, 2- and 3-dimensional objects; study of magnetodynamics of spin system cou-
pled with the passive resonator (radiation damping (RD)); application of RD to ultra-fast relaxation in an
assembly of single-domain ferromagnetic particles; study of the role of long distant dipole–dipole fields
as the origin of the extremely random behavior in hyperpolarized NMR maser, etc. Estimates of speedup
and efficiency of implemented algorithms in comparison with sequential algorithms have been obtained.
It is shown that the use of supercomputing technology for study of spin dynamics provides simulation
power for spin systems which include thousands of magnetic voxels.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

We describe computational model, algorithms and some appli-
cations of high-performance and reliable software for computer
simulation of spin dynamics of magnetic nanostructures, such as
nano-molecules, nano-clusters, molecular crystals. The main diffi-
culty of describing the collective behavior of multi-spin systems is
rooted in the presence of long-range spin–spin interactions. For
systems consisting of a large number (thousands) of spins, finding
of the spectrum of eigenvalues of the quantum Hamiltonian is not
possible because computational complexity of the problem grows
exponentially as the number of spins increases. However, for large
values of the spins of the individual particles quasi-classical
approximation may be used, in which the spins are treated as clas-
sical vectors. Even in this approximation, the numerical study of
the spin dynamics models is accompanied by a non-linear increase
in computational complexity with respect to the number of struc-
tural elements.

The modeling of thermodynamic [1] and dynamic [2] properties
of the systems of interacting spins, including the simulation of
coherent processes, was initiated on the mainframes of 3rd

generation and continued on personal computers [3]; it was avail-
able for systems with a relatively small number of magnetic
moments. However, to adequately reflect the real processes of spin
dynamics, simulation systems must consist of thousands of mag-
netic moments, and the problem of the lack of computing power
continues to exist. Parallelization of the algorithms and the use
of supercomputers show promise of the possibility of potentially
significant increase in the number of structural elements of the
model and the range of time evolution of the systems that are
available for study. However, the parallel computational methods
require specific studies for ensuring the correctness of the results
and efficiency of mapping of parallel computing algorithms for
modern computer architectures.

2. Theoretical model used for numerical simulations

Physical phenomena investigated in this paper using parallel
computational methods are different coherent relaxation pro-
cesses, in particular the problem of super-radiance where the
relaxation time can be inversely proportional to the number of
spins [4–6].

We consider simulations for two particular problems of coher-
ent spin dynamics. The first is fast magnetic relaxation in a
ferromagnet nanoparticle system based on the theory of
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superradiation. The dynamics of magnetization inversion of a
nanoparticle is governed by the Landau–Lifshitz relaxation and
radiation damping. The numeric simulations enable us to account
for the interparticle dipole–dipole interactions in a rigorous way.
In the second, a numerical simulations based on microscopic
approach are used to explore the spin dynamics encountered in
the recently reported hyperpolarized 129Xe NMR maser where ser-
ies of amplitude modulated rf emissions are observed [7].

In both cases the ensemble of magnetic moments (the sample)
is placed into a homogeneous magnetic field H0 aligned with the Oz
axis and into a resonator (detection coil) which we model by an
LCR circuit, with Ox taken as the coil axis. As soon as the magnetic
moments are no longer aligned with Oz, an electromotive force
appears in the coil, which in turn, induces an AC current in the cir-
cuit. The magnetic field produced by this electrical current acts on
the nuclear magnetic moments modifying their individual
dynamics.

In the first problem the dynamics of the particles that make up
the ensemble, can be described by a system of equations for clas-
sical magnetic moment of each particle l(k):

dlðkÞ

dt
¼ �jcjðlðkÞ �HðkÞÞ � ajcj

l
ðlðkÞ � ðlðkÞ �HðkÞÞÞ: ð1Þ

In (1) a is dimensionless parameter of the spin–lattice relaxation, c
– gyromagnetic ratio for electrons, HðkÞ – magnetic field acting on
the k-th spin. HðkÞ includes:

(1) a constant external field H0kOz,
(2) a single-axle anisotropic field HA = (HA/l)(ln)n, HA = 2EA/l,

where n is unit vector of the easy axis, EA is anisotropy
energy,

(3) the field of feedback H = (H, 0, 0) induced in the resonant
coil,

(4) dipole magnetic field HðkÞd induced by pair dipole–dipole
interactions of the k-th particle with all the others.

Let us define dimensionless parameters

pA ¼
xA

x0
¼ HA

H0
; pH ¼

xH

x0
¼ H

H0
; pd ¼

xd

x0
¼ l

a3H0
; ð2Þ

where x0 = |c|H0, xH = |c|H, xd = |c|l/a3, xA = |c|HA are the frequen-
cies related with the field H0 (Larmor frequency), field of feedback
and dipole (local) magnetic field. Here a is the average distance
between particles.

As a result Eq. (1) for the unit vectors e(k) = l(k)/l take the form
[8]

_eðkÞx ¼ �ð1þxi þ pAeðkÞz ÞeðkÞy � pdiðeðkÞy
~HðkÞdz � eðkÞz

~HðkÞdy Þ

þ aðpH þ pdi
~HdxÞ � eðkÞ2y þ eðkÞ2z Þ

� að1þ pAeðkÞz þ pdi
~HdzÞeðkÞx eðkÞz � apdi

~HdyeðkÞx eðkÞy � C2eðiÞx ;

_eðkÞy ¼ ð1þxi þ pAeðkÞz ÞeðkÞx � pHeðkÞz � pdiðeðkÞz
~HðkÞdx � eðkÞx

~HðkÞdz Þ
� aðpH þ pdi

~HdxÞ � eðkÞx eðkÞy � að1þ pdi
~Hdz þ pAeðkÞz ÞeðkÞy eðkÞz

þ apdi
~HdyðeðkÞ2x þ eðkÞ2z Þ � C2eðiÞy ;

_eðkÞz ¼ pHeðkÞy � pdiðeðkÞx
~HðkÞdy � eðkÞy

~HðkÞdx Þ � aðpH þ pdi
~HdxÞeðkÞx eðkÞz

þ að1þ pAeðkÞz þ pdi
~HdzÞðeðkÞ2x þ eðkÞ2y Þ � apdi

~HdyeðkÞy eðkÞz :

ð3Þ

Time derivatives in (3) are defined with respect to time ~t ¼ x0t.
Here pdi = pd(1 + di), di is dispersion of precession frequency of spin
number i, xi is Zeeman frequency of precession of i-th spin (both di

and xi are distributed under the normal law random variable with
zero average value and dispersion rd and rx). Additional relax-

ation terms �C2eðkÞx;y may, in some cases, be caused by short-range
dipole interactions.

The equation for magnetic field generated in the resonator in
process of spin relaxation is [9,10]:

d2

d~t2
pH þ 2

cr

x0

d
d~t

pH þ
xr

x0

� �2

pH ¼ �4pb
1
N

d2

d~t2

XN

l¼1

eðlÞx

 !
: ð4Þ

The coefficients in the left-hand side of Eq. (4) can be expressed
in terms of the parameters of the circuit 2cr = R/L = xr/Q and
xr ¼ 1=

ffiffiffiffiffiffi
LC
p

, where Q is the quality factor. The expression in paren-
theses on the right hand side of Eq. (4), it makes sense to the
ensemble-averaged values of the second derivative of x-projection
of the unit vector of the magnetization. Quantity b = gNl/(VH0)
determines the intensity of magnetic coupling between ensemble
of the magnetic moments and the inductance coil. The initial con-
ditions for Eq. (4) are zero: pH(0) = 0, _pHð0Þ ¼ 0.

3. Method of numerical modeling

In order to solve the equations of motion, a hybrid method for
the numerical simulation is utilized, which is often used in the
study of the dynamics of spin systems. In this method the spins
are regarded as the ‘‘classic’’ (the usual three-dimensional vectors)
and the system of differential Eqs. (3) and (4) is solved numerically
using the Runge–Kutta method.

Simulation of the dynamics of the spin system with an assigned
initial polarization p0 is performed using the Monte Carlo tech-
nique. For this purpose, we construct a random configuration of
equiprobable spin directions (first approximation for the Gibbs
ensemble sampling). Each direction is characterized by the unit

vector ~eð~xÞ ¼ ð~ie x þ~je y þ~kezÞ, where ðexÞ2 þ ðeyÞ2 þ ðe zÞ2 ¼ 1. We
are looking for a random vector ~e such that Pf~e 2 Xg ¼ X=4p for
any solid angle X. It is easy to see that if x is a random point uni-
formly distributed in a sphere, the direction of its radius-vector
has necessary properties. Thus, we assume cos h ¼ 2c1 � 1,
u = 2pc2, where c1 and c2 are independent random variables uni-
formly distributed in the interval [0,1). Cartesian coordinates of
the vector ~e are calculated by the usual formulas:

ex ¼ cos u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h
p

, e y ¼ sin u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h
p

, ez ¼ cos h.
For the resulting configuration the total magnetization pinit is

calculated. Then, for some randomly selected node a new random
direction is defined (as described above) and new total magnetic
moment p0 is calculated. If |p0 � p0| < |pinit � p0| then modified spin
direction is taken as a new member approximation of the ensem-
ble, otherwise discarded. After finding the next configuration of
the Gibbs ensemble, this configuration is taken for starting, etc.
Thus, the configuration is determined with polarization that is
close enough to the initially set. Appropriate array of spin’s
orientation is selected as the initial configuration.

The condition that each individual spin must maintain its

length l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe xÞ2 þ ðe yÞ2 þ ðezÞ2

q
¼ 1 is used to control the accuracy

of the calculations and to automatically adjust the length of the
integration step. If after one integration step l deviates from 1 more
than set error e the step decreased twice. If throughout 10 steps Dt
does not change, the step increases twice.

4. Analyses of a potential parallelization of the initial codes

The initial software was created in the environment Borland C
++ Builder (program ‘‘Spins’’) and environment Borland Delphi
(program ‘‘MagnetoDynamics’’) for only sequential algorithms
under MS Windows. These restrictions prevented the effective
use of high performance computing in research of magnetodynam-
ics and coherent processes in nano-magnetic structures.
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