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a b s t r a c t

This paper develops an approach to model the deformation and fracture of heterogeneous materials at
different scales (including multiscale modeling) within a discrete representation of the medium.
Within this approach, molecular dynamics is used for the atomic-scale simulation. The simply deform-
able distinct element method is applied for simulating at higher length scales. This approach is proposed
to be implemented using a general way to derive relations for interaction forces between distinct ele-
ments in a many-body approximation similar to that of the embedded atom method. This makes it pos-
sible to overcome limitations of the distinct element method which are related to difficulties in
implementing complex rheological and fracture models of solids at different length scales. For an ade-
quate description of the mechanical behavior features of materials at the micro- and mesoscales, two
kinds of models that consider grain and phase boundaries within the discrete element framework are
proposed. Examples are given to illustrate the application of the developed formalism to the study of
the mechanical response (including fracture) of materials with multiscale internal structure. The exam-
ples show that the simply deformable distinct element method is a correct and efficient tool for analyzing
complex problems in solid mechanics (including mechanics of discontinua) at different scales.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Currently, the design of advanced materials is in many respects
based on theoretical results obtained with computer simulation.
The necessity for computer simulation in modern materials science
and mechanical engineering has promoted a rapid development of
numerical methods and generated a need for the development of
methodologies and approaches of multiscale modeling of material
deformation and fracture. In the last years, multiscale modeling
has evolved into an independent line of computer-aided research
and design of materials, which has greatly influenced the develop-
ment of computational methods and led to the development of
various combined numerical techniques [1–4]. Despite a

significant difference in various multiscale modeling approaches,
all of them are similar in that they take into account (explicitly
and implicitly) the contribution of deformation mechanisms of
spatial and structural scales, lower with respect to the considered
one, to the mechanical response of the material at the considered
scale (this assumption is called the structure–property paradigm
[1]). This actually means the requirement for taking into account
the internal structural and rheological features of basic structural
elements at different scales, first of all, at the nano- and microscale.
The basic elements of the internal structure are not only grains and
inclusions of other phases but also interfaces between them and
discontinuities whose deformation ability and evolution play a
crucial role for a wide range of materials, primarily, nanostructured
materials.

The whole family of various methods that take into account the
hierarchy of structural scales on the mechanical response of the
material can be arbitrarily divided into two types (methodologies).
The first one is based on decomposing a problem into fine and
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coarse scales [2]. The practical implementations of this methodol-
ogy as a rule reduce to two-scale methods and models. These are,
particularly, the variational multiscale method proposed by
Hughes et al. [5] and different multigrid methods including com-
bined techniques in which a system is divided into domains with
different discretization step modeled with the use of different
numerical methods (finite element method, molecular dynamics
method, discrete element method, etc.) [6–9]. The second, most
widely adopted methodology implies the determination of a hier-
archy of basic structural scales in the modeled material and
determination of a representative volume or a system of represen-
tative volumes with qualitatively different structural and phase
composition on each scale [10–14]. The representative volume of
a considered scale must contain a sufficient number of structural
elements of this scale for correct subsequent homogenization.
Numerical results on the mechanical response of the representa-
tive volume are used to determine its integral mechanical proper-
ties, including the equation of state and its parameters, the fracture
criterion and fracture parameters, and so on. These parameters are
taken as input parameters (response parameters of discretization
units) on a higher scale. Consistent implementation of the given
procedure starting from the atomic or nanoscale yields the con-
struction of micro-, meso- and macroscale models of solids with
multiscale internal structure. It should be noted that this metho-
dology is based on two essential approximations. The first one
implies a unique relation between characteristic sizes of the inter-
nal structure elements on a considered scale and characteristic
times of accommodation/relaxation processes of this scale. The
second approximation implies that energy thresholds of activation
of deformation mechanisms depend uniquely on their spatial
scales. Today, there are different practical implementations of the
discussed methodology. The most rigorous and advanced imple-
mentations take into account the kinetics of deformation, includ-
ing relaxation, processes on lower scales through the
introduction of additional input parameters (internal variables)
governed by special evolution equations [13,15].

Despite different formalisms of different approaches, a common
problem of multiscale modeling is the different representation of
the medium in numerical methods applied for modeling at differ-
ent scales. For example, the integral properties of the atomic and
nanoscale representative volumes are determined using molecular
dynamics and molecular mechanics methods, Monte-Carlo method
and others. These methods are based on a discrete description of
solids. At the same time, multiscale modeling of materials on
higher spatial and structural scales is conventionally performed
using continuum mechanics methods (finite element and finite dif-
ference methods). Different concepts of the medium representa-
tion result in qualitatively different formalisms of these
numerical methods, particularly, different formulation of equa-
tions of motion and state. The question naturally arises whether
it is possible and efficient to perform numerical modeling of mate-
rial deformation and fracture on all scales using numerical meth-
ods that refer to a unified (discrete) concept of the medium
representation. The importance of this question is particularly
related to the necessity of taking into account the evolution of dif-
ferent-scale initial discontinuities (cracks and damages) and new
discontinuities formed under deformation. A large group of prob-
lems in which a direct description of discontinuous (discrete)
structure of a considered medium at different scales is crucial for
obtaining an adequate solution has been called the mechanics of
discontinua [16]. The necessity of describing a solid as a multiscale
discontinuous (discrete) system led to the development of a broad
class of ‘‘discrete’’ numerical methods based on the representation
of the medium as an ensemble of interacting particles (currently
these methods are called particle-based) [17–24]. The principal dif-
ference of these methods from computational methods in

continuum mechanics is the replacement of a continuous repre-
sentation of the material or medium by an ensemble of interacting
point masses (at the atomic scale within the framework of molecu-
lar dynamics or Monte-Carlo method) or by an ensemble of inter-
acting particles of finite size (at higher spatial scales). The
difference in the medium representation within continuum and
discrete concepts determines differences in governing and balance
equations. In particular, in explicit formulation conventional equa-
tions of motion of continuum are replaced by ordinary differential
equations (for translations and rotations) governing the evolution
of a particle ensemble. Relations between local stresses and strains
or their time derivatives are replaced by expressions for poten-
tials/forces of particle–particle interaction. One of the most impor-
tant consequences of these features of particle-based methods is
an inherent ability of discrete domains (particles) to change sur-
roundings. This makes ‘‘discrete’’ numerical methods extremely
attractive for direct modeling of complicated fracture-related pro-
cesses at different spatial and structural scales up to the macro-
scale [16,18,22,25–27].

Well-known numerical methods widely applied for problem
solving in the mechanics of discontinua are discrete element meth-
ods (DEM). The term DEM implies a large group of modeling tech-
niques that treat a solid as an ensemble of deformable or rigid
bodies of arbitrary shape [16–21,24,27–31]. The main differences
between various representatives of the DEM group are in the prin-
ciples of formulation of motion equations and in the approx-
imations to the description of element deformability. There are
two approaches to formulate the motion equations of discrete ele-
ments: implicit (represented by discontinuous deformation analy-
sis) and explicit [29,31]. In the framework of the first approach
motion equations are written for all the elements in matrix form
and solved simultaneously using corresponding methods for solv-
ing of sets of linear/nonlinear algebraic equations. In the second
approach, which is used in this paper, motion equations are writ-
ten and solved ‘‘individually’’ for each element.

Various representatives of the group of explicit discrete element
methods differ in the approximations used to describe (i) strain
distribution in the bulk of discrete element, and (ii) influence of
shape/geometry of the element on its kinematics and interaction
with surrounding [31]. In particular, for discrete elements of com-
plex shape, conventionally approximated by generally shaped
polygons or polyhedrons, the motion equations for rotational
degrees of freedom has a complex form. Besides, presence of
vertices and edges for such elements lead to separation of the
interaction with surrounding into several types (vertex–vertex,
vertex–face, vertex–edge, edge–edge, etc.) [31]. Such details are
of principle for modeling blocky and granular materials and media.
At the same time, use of polygonal shape of discrete elements in
modeling consolidated materials with complex internal structure
(polycrystals, composites) at the mesoscopic scale results in some
limitations for spatial discretization. In particular, a polygonal
element is correct structural model for separate grain or phase
inclusion. However, modeling grain/inclusion by ensemble of
interacting polygonal elements may lead to generation of artificial
effects. That is why simplified elements are mainly used in DEM-
based modeling of consolidated polycrystal and multiphase
materials at mesoscopic scale. In the framework of this approach
it is assumed that interaction between discrete elements occurs
on plane faces (face–face interaction). The size of face is chosen
based on the local packing of elements so that imaginary polygons
(obtained by connecting the vertices of the plane faces) fill the
space without voids (or produce required fraction and shape of
the voids). The effect of vertices and edges is usually neglected
here. One representative of such simplification of element geome-
try is its interpretation as equivalent circular disc (in 2D problem
statement) or sphere [29–31] (obviously, that is applicable for
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