
Calculating probability densities associated with grain-size distributions

J.M. Rickman a,b,⇑, A. Lawrence a, A.D. Rollett c, M.P. Harmer a

a Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, United States
b Department of Physics, Lehigh University, Bethlehem, PA 18015, United States
c Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States

a r t i c l e i n f o

Article history:
Received 24 November 2014
Received in revised form 17 January 2015
Accepted 21 January 2015
Available online 18 February 2015

Keywords:
Microstructure analysis
Statistics

a b s t r a c t

We describe a methodology for calculating approximate, yet accurate analytical expressions for the prob-
ability density function of grain diameter as obtained from experimental microstructures. This method-
ology relies on a novel cumulant expansion that is tailored to the lognormal distribution and provides a
systematic description of departures from lognormality. We test our methodology by characterizing two
data sets obtained from the microstructures associated with polycrystalline, high-purity Al2O3 samples.
The utillity of this approach is demonstrated by a detailed statistical analysis.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The microstructures of polycrystals typically have a significant
impact on their mechanical and electronic properties, and there-
fore a quantitative characterization of salient microstructural fea-
tures is especially important in such systems [1]. One such
characterization is the determination of a probability density func-
tion (pdf) for an important microstructural descriptor, such as the
grain diameter. Indeed, several probability densities have been
employed to describe coarsened microstructures. For example, in
early work Feltham [2] suggested that grain diameters are lognor-
mally distributed, and others [3] have demonstrated that this dis-
tribution can be derived from an assignment of grains to
topological classes. By contrast, Louat proposed a model in which
grain-boundary motion is essentially random in nature, with the
resulting grain diameter following a Rayleigh distribution [2]. It
should be noted, however, that some stochastic models, such as
the one proposed by Louat, appear to have no theoretical justifica-
tion since the associated Fokker–Planck equation does not contain
the requisite diffusive terms [4]. In recent work, Barmak et al. [5]
advanced our understanding of other microstructural descriptors,
such as the grain-boundary character distribution, by formulating
an entropy-based theory that indicates that the evolution of this
distribution obeys a Fokker–Planck equation.

There have been various studies that tried to assess the validity
of particular grain-diameter pdfs generated both experimentally
and by computer simulation. In early work, Palmer et al. [6]

characterized normal and secondary grain growth in Ge thin films.
In this study the authors fit the grain-size distribution obtained for
a 30-nm-thick thin film to the lognormal, Louat [7] and Hillert [8]
distributions, and found that the lognormal density provided the
best fit at small grain sizes. In addition, Barmak et al. [9] studied
grain growth and ordering kinetics in CoPt alloy films by quantifi-
cation of the grain-size distribution, finding that the grain-size dis-
tribution is lognormal at stagnation. More recently, Donegan et al.
[10] investigated deviations from lognormality in the upper tails of
grain-size distributions compiled from two- and three-dimen-
sional microstructures. They were able to quantify these deviations
by employing extreme-value statistics to the upper tails of distri-
butions. By contrast, Carpenter et al. [11] performed a grain-size
analysis on a large grain population (� 104 grains) associated with
an Al thin film and were unable to find acceptable agreement with
several plausible theoretical densities (i.e., lognormal density,
gamma density and the Rayleigh density) [11].

Given the need to quantify the distribution of grain sizes, we
describe here a methodology for calculating analytical expressions
for the grain-diameter pdf as obtained from experimental micro-
structures. Our strategy is to use shape features of pdfs that are
compiled from microstructural data to find an approximate pdf
that characterizes the data. In particular, by assuming that the dis-
tribution of grain diameters is ‘‘close’’ to a known pdf (e.g., lognor-
mal density), the compiled pdf will be expressed in terms of an
expansion that is tailored to the known pdf. The formalism for such
an expansion will be considered in general. In the case of a lognor-
mal density in particular, the requisite expansion will be written in
terms of log-cumulants that arise in so-called ‘‘second-kind’’
statistics [12]. As will be seen below, in this formulation a Mellin
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transform (as opposed to the usual Fourier or Laplace transform) is
used to generate the moments (or cumulants) of a distribution
based on the logarithm of a random variable. It has been employed,
to a limited degree, in the analysis of radar images and mixtures of
gamma distributions [12]. The novel, associated cumulant expan-
sion is tailored to the lognormal distribution and provides a sys-
tematic description of departures from lognormality. Before
describing our analysis of microstructural data, we first outline
the more conventional analysis of densities that are approximately
normal using the Gram–Charlier series [13]. We then validate our
approach by characterizing the grain populations for two experi-
mentally obtained microstructures.

2. Background

2.1. Formalism and normal density

Consider a grain-size distribution, pðGÞ, reflecting the probabil-
ity density of finding a grain of diameter, G, in a population associ-
ated with a microstructure. The nth moment of this probability
density function, hGni, can be conveniently calculated from the
characteristic function [16]

~pðtÞ ¼
Z 1

�1
dG eitG pðGÞ; ð1Þ

by differentiation, noting that

hGni ¼ ð�iÞn@
n~pðtÞ
@tn

����
t¼0
: ð2Þ

It is also useful to regard the characteristic function as a cumulant
generating function via the relation

~pðtÞ ¼ exp
X1
n¼1

ðitÞn

n!
Cn

" #
; ð3Þ

where Cn is the nth-order cumulant [19]. Cumulants are combina-
tions of moments and provide another means to characterize a dis-
tribution [17,18]. The cumulants can therefore be calculated
directly from Eq. (3) from

Cn ¼ ð�iÞn@
n ln ~pðtÞ
@tn

����
t¼0
: ð4Þ

To see the utility of the cumulant-generating function, suppose
that the probability density is given by the Gaussian (i.e., normal
density)

pGaussðGÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

r

� �
exp �ðG� lÞ2

2r2

" #
; ð5Þ

with mean, l, and standard deviation, r. Since the corresponding
characteristic function is given by

~pGaussðtÞ ¼ exp itl� t2r2

2

� �
; ð6Þ

one can see that this probability density is fully described by its first
two cumulants, namely CGauss

1 ¼ l and CGauss
2 ¼ r2. In other words,

for a Gaussian, all cumulants beyond the first two vanish.
It is also possible to find an expression for a probability density

that is ‘‘close’’ to a Gaussian in terms of a cumulant expansion, the
so-called Gram–Charlier series [13,14]. More specifically, for the
characteristic function ~pðtÞ, one can write

~pðtÞ ¼ exp
X1
n¼1

ðitÞn

n!
Cn � CGauss

n

� 	" #
~pGaussðtÞ: ð7Þ

Now, if CGauss
n ¼ Cn for n ¼ 1;2, then

~pðtÞ ¼ exp
X1
n¼3

ðitÞn

n!
Cn

" #
~pGaussðtÞ: ð8Þ

By taking the inverse Fourier transform of Eq. (8), one can obtain the
desired distribution, namely pðGÞ. In practice, given the complexity
of Eq. (8), one can only obtain an approximation to this distribution.

To obtain this approximation, consider a term-by-term inver-
sion. This can be accomplished by using an integral representation
for the Hermite polynomial of order n;Hn, given by [15]

HnðxÞ ¼
ð�2iÞnffiffiffiffi

p
p

Z 1

�1
dt e�ðt�ixÞ2 tn: ð9Þ

One then finds that

1
2p

Z 1

�1
du e�u2r2=2 eiðl�GÞu un ¼ in pGaussðGÞ
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; ð10Þ

where the probabilist’s Hermite polynomial, HeðxÞ, is related to

HnðxÞ by the rescaling identity HeðxÞ ¼ 2�n=2Hn x=
ffiffiffi
2
p� 	

. Then, one

can invert the lowest-order terms in Eq. (8) to obtain

pðGÞ
pGaussðGÞ ¼ 1þ 1
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where the symmetry property Henð�xÞ ¼ ð�1ÞnHenðxÞ was used to
simplify this expression.

2.2. Lognormal density

A similar formalism, called second-kind statistics, can be
obtained from a different characteristic function and will be useful
for analyzing distributions that are ‘‘close’’ to the lognormal distri-
bution [12,20]. An approach, similar to that outlined below, has
already been employed in the astrophysics literature to quantify
the pdf associated with the distribution of particles in cold dark
matter simulations [21]. In this approach a second-kind character-
istic function is given as the Mellin transform of the probability
density by

p̂ðsÞ ¼
Z 1

0
dG Gs�1 pðGÞ; ð12Þ

where s is a complex quantity in Mellin space, and the correspond-
ing log-moments are obtained via differentiation by

hðln GÞni ¼ @
np̂ðsÞ
@sn

����
s¼1
: ð13Þ

By analogy with the development above, one can regard the second-
kind characteristic function as a log-cumulant generating function
using the relation

p̂ðsÞ ¼ exp
X1
n¼1

ðs� 1Þn

n!
Kn

" #
; ð14Þ

where Kn is the nth-order log-cumulant.
As an illustration of the application of this formalism, suppose

that one has the lognormal density

plogðGÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

rG

� �
exp �ðln G� lÞ2

2r2

" #
; ð15Þ

with parameters l and r. The corresponding second-kind charac-
teristic function is given by
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