
Accelerating dissipative particle dynamics simulations
for soft matter systems

Trung Dac Nguyen a,⇑, Steven J. Plimpton b

a National Center for Computational Sciences, Oak Ridge National Laboratory, TN 37831, United States
b Sandia National Laboratories, Albuquerque, NM 87185, United States

a r t i c l e i n f o

Article history:
Received 22 September 2014
Received in revised form 30 October 2014
Accepted 31 October 2014
Available online 26 November 2014

Keywords:
Dissipative particle dynamics
LAMMPS
GPU acceleration
Hybrid CPU/GPU
Hybrid MPI/GPU
High-performance computing

a b s t r a c t

Dissipative particle dynamics (DPD) is a coarse-grained particle-based simulation method that offers
microscopic-scale insights into soft matter systems. We present an efficient implementation of a DPD
model for graphical processing units (GPUs). As implemented in the LAMMPS molecular dynamics
package, it can run effectively on current-generation supercomputers which often have hybrid nodes
containing multi-core CPUs and (one or more) GPUs. Using efficient communication of information
between the CPUs and GPUs, DPD interactions can be computed on the GPU while other portions of a full
simulation model (boundary conditions, constraints, bonded interactions, diagnostic calculations, etc.)
can be performed on the CPU. Our GPU-enhanced runs show a speedup of up to 9.5� versus many-core
CPU simulations, and can run scalably across thousands of compute nodes. We briefly discuss how the
new GPU implementation was validated against the CPU version for thermodynamics, diffusion, and
hydrodynamic behavior. We also highlight large-scale models which the faster DPD implementation
has enabled, for studies of monolayer self-assembly and thin-film instabilities.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dissipative particle dynamics (DPD) was first proposed by
Hoogerbrugge and Koelman in 1992 as a particle-based method
for studying hydrodynamic phenomena [1]. The statistical
mechanics foundation of DPD was developed by Español and War-
ren in 1995 [2], followed by a rigorous analysis on the nature of its
simulation parameters by Groot and Warren [3]. DPD has been
widely used for studies of soft condensed matter systems, where
the length scale of interest is greater than the atomistic scale but
smaller than the characteristic structural dimensions, e.g. the scale
of network connections or the spacings between assembled layers
[3]. Owing to its inherent coarse-grained soft sphere model and its
capability for capturing hydrodynamic interactions, DPD has also
been used extensively in coupling particle-based simulation with
continuum analyses, i.e. for multi-scale modeling. Examples
include the study of fluid flows in microchannels [4–6], thin film
evolution [7,8], self-assembly in surfactants and amphiphilic sys-
tems [9–15], structural and rheological properties of polymers
[16–18] deformation of red blood cells [19] and membranes
[20,21]. We refer the readers to reference [22] for a thorough

review of the applications of DPD simulations to soft matter
systems.

DPD is a relatively ‘‘cheap’’ computational model for two
reasons. Its interactions are pairwise within a relatively short cut-
off distance. And the pairwise interactions have a ‘‘soft’’ core which
allows use of a larger timestep than for other potentials such as
Lennard–Jones with its 1=r12 core. As highlighted below, these fea-
tures have made it an attractive model for GPU implementation by
several groups; pairwise potentials are more straight-forward to
parallelize for a GPU than many-body potentials [23,24]. However,
its soft core and the kinds of soft materials DPD is used to model,
make it less amenable to the kinds of algorithmic acceleration
techniques discussed elsewhere in this special issue. Methods such
as parallel replica dynamics [25], temperature-accelerated dynam-
ics [26], and kinetic Monte Carlo [27], enable dramatically longer
timescale simulations by exploiting the rareness of discrete
‘‘events’’, defined as the crossing of well-defined energy barriers.
These methods have thus been almost exclusively applied to
solid-state materials. Soft materials, modeled by soft potentials,
under non-equilibrium conditions, do not typically have easily-
identifiable barriers and events. In this paper we therefore address
the theme of the special issue by relying less on algorithmic insight
and more on exploiting new hardware (GPUs) to achieve
accelerated simulation capabilities. We do this for a class of
coarse-grained models which have wide application in industrial

http://dx.doi.org/10.1016/j.commatsci.2014.10.068
0927-0256/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: ndactrung@gmail.com (T.D. Nguyen).

Computational Materials Science 100 (2015) 173–180

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2014.10.068&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2014.10.068
mailto:ndactrung@gmail.com
http://dx.doi.org/10.1016/j.commatsci.2014.10.068
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


processing and more generally for simulation of liquids and soft
matter at the mesoscale.

As is now well appreciated, the introduction of general-purpose
graphics processing units (GPGPUs) to scientific computing (circa
2007) opened new opportunities for accelerating molecular
dynamics (MD) codes. Exploiting the fine-grained parallelism
offered by GPUs requires new MD methodologies. One trade-off
is whether to offload only computationally intensive tasks to the
GPU versus perform the entire simulation on the GPU. The former
strategy (employed in this paper) is often pursued by legacy codes
(e.g., NAMD [28], GROMACS [29] and LAMMPS [30]), and the latter
by newer codes (e.g., HOOMD-Blue [31]).

Several successful efforts to accelerate DPD using GPUs have
recently been described in the literature. To our knowledge, the
first implementation of DPD to take full advantage of the single-
instruction-multiple-threads (SIMT) environment of the GPU was
the work of Phillips et al. [32] for HOOMD-Blue. In that work, a
hash-function-based pseudo random number generator (PRNG)
was used, previously developed by Steve Worley’s group, to create
a micro-stream of random numbers (RNs) per thread per kernel
call. Their approach addressed issues with (1) memory storage
for matching random numbers for each pair, (2) broadcasting the
states of the PRNG among threads, (3) expensive arithmetic oper-
ations required for generating RNs, and (4) the low quality of
built-in linear congruential RNGs for large systems and long simu-
lations. Specific details on the PRNG were subsequently described
in the work of Afshar et al. [33]. These ideas have been extended
for accelerating DPD in codes using multiple GPUs [34], using mes-
sage-passing-interface (MPI) parallelism [33], and using hybrid
MPI/CUDA parallelism [14]. Notably, the GPU-accelerated version
of a generalized DPD model recently described by Tang and Karni-
adakis [14] was shown to obtain a 10–30� speedup compared to a
corresponding CPU-only version in LAMMPS [14]. This implemen-
tation was used in a large-scale mesoscopic study of amphiphilic
systems in bulk and under soft confinement [15].

All of these DPD GPU implementations achieve their advertised
speed-up when the entire MD simulation runs continuously on the
GPU(s). By contrast, there is a package in LAMMPS (called GPU),
which is designed to work on hybrid platforms, i.e. ones with com-
pute nodes containing both CPUs and GPUs [35]. It allows pairwise
potentials (and one many-body potential, Stillinger–Weber) as
well as long-range electrostatic interactions to be computed on
the GPU, concurrently with other bonded interactions (bonds,
angles, dihedrals, etc.) computed on the CPU.

More importantly, the GPU package still achieves good
performance while communicating updated atom properties (posi-
tions, forces) back-and-forth between the CPU(s) s and GPU each
timestep. This is because the package allows multiple CPU cores
to host a single GPU, which enables a greater degree of MPI-based
parallelism across the multi-core CPUs of a large machine for these
kinds of simulations. As a result, GPU utilization can be maximized
and data transfers from one MPI task can be overlapped with GPU
computations for other MPI tasks [23]. We note that complex sim-
ulations often involve significant computations that occur each
timestep or every few timesteps, which at least in LAMMPS, have
not been (and may never be) implemented for the GPU. Examples
include specialized boundary conditions, application of constraint
forces, simulation box deformations, calculation of diagnostic
properties, etc. Using the GPU package, these computations still
run efficiently on the CPU, using conventional MPI-based
parallelization.

Many potentials have already been implemented for the GPU
package in LAMMPS, including Coulombic and dipole–dipole inter-
actions, Gay-Berne for ellipsoidal interactions, and the EAM, DLVO,
and Stillinger–Weber potentials [36,37,23]. In this paper, we
describe how the DPD model was implemented in the GPU package

framework which required some unique issues to be addressed.
The next sections give brief details of the implementation and
illustrate its use in large-scale modeling of soft materials. The
capabilities described here have been part of the general LAMMPS
open-source release since April 2014.

2. Implementation

2.1. Equation of motion in DPD

In the standard DPD method, the equation of motion for particle
i is given as [1–3]:

mi
d2xi

dt2 ¼
X

j–i

FC
ij þ FD

ij þ FR
ij; ð1Þ

where mi and xi are the mass and position of particle i, respectively.
FC

ij ; FD
ij and FR

ij are the conservative force, drag force and random
force, respectively, between particle i and its neighbor j within
the cutoff distance rc . These forces are defined as:

FC
ij ¼ aijwCðrijÞeij ð2Þ

FD
ij ¼ �cwDðrijÞðeij � vijÞeij ð3Þ

FR
ij ¼ rwRðrijÞnijDt�1=2eij ð4Þ

where rij ¼ rijeij is the distance vector between particles i and j; aij

is the interaction strength, vij ¼ vi � vj; Dt is the integration time
step, and nij is a random variable with Gaussian characteristics:
hnijðtÞi ¼ 0 and hnijðtÞnklðt0Þi ¼ ðdikdjl þ dildjkÞdðt � t0Þ [3]. Importantly,
the random variable is symmetric for every pair ij : nijðtÞ ¼ njiðtÞ.
wCðrijÞ, wDðrijÞ and wRðrijÞ are the weighing functions designed to
vanish for r P rc . In Eq. (4), the random force magnitude is inversely
proportional to the time step, Dt�1=2, to take into account the time
discretization of the numerical integrator [3].

For mesocopic coarse-grained models, for which DPD was
developed, the conservative weighing function wCðrijÞ is often
chosen as, but not restricted to, a soft-core potential:

wCðrijÞ ¼ 1� rij

rc
; ð5Þ

which allows particles to pass through each other. It is the soft-core
model that allows for substantially bigger integration time steps
compared to those used for atomic- and molecular-scale models.
The random and drag weighing functions, and their corresponding
amplitudes, are related to each other via the fluctuation–dissipation
theorem [2,3]:

w2
RðrijÞ ¼ wDðrijÞ ð6Þ

r2 ¼ 2ckBT ð7Þ

In the original formulation, nij is a normally distributed random
variable with zero mean and unit variance, i.e., Nð0;1Þ. However,
it was shown that a uniformly distributed variable, Uð�0:5;0:5Þ,
with amplitude multiplied by

ffiffiffiffiffiffi
12
p

, yields indistinguishable results
[3], an effect we examine in Section 3.2.

The relationship between the drag force and random force (Eqs.
(6) and (7)) allows DPD to sample from the canonical ensemble [2].
Because the drag and random forces force between two interacting
particles satisfy Newton’s third law, they serve as a momentum-
conserving thermostat. This is in contrast to Brownian Dynamics
where the random forces applied to individual particles are
uncorrelated. As a result, DPD is the current method of choice for
simulating mesoscopic systems where hydrodynamic interactions
are relevant.

174 T.D. Nguyen, S.J. Plimpton / Computational Materials Science 100 (2015) 173–180



Download English Version:

https://daneshyari.com/en/article/1560351

Download Persian Version:

https://daneshyari.com/article/1560351

Daneshyari.com

https://daneshyari.com/en/article/1560351
https://daneshyari.com/article/1560351
https://daneshyari.com

