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a b s t r a c t

It is of vital importance to determine the critical magnetic and/or mechanical conditions under which the
magnetic spin order becomes unstable in order to understand the microscopic nature of magnetic insta-
bilities in ferromagnetic materials, often in conjunction with structural lattice instabilities, e.g., magnetic
phase transitions and domain switching, as the source of diverse functionalities or the cause of critical
failure of magnetic devices. Here, we propose an analytical method based on state-of-the-art spin–lattice
modeling of ferromagnets to enable rigorous descriptions of magnetic instabilities in arbitrary atomic
systems under a finite magnetic field and/or mechanical loading. The present theory yields, as an insta-
bility criterion, the condition that the minimum eigenvalue of the Hessian matrix of potential energy
with respect to atomic coordinate and magnetic moment must be zero. In addition, the corresponding
eigenvector represents the magnetic behavior of the spin moment at the instability, which is successfully
validated by applying the criterion to magnetization switching in ferromagnetic Fe under an external
magnetic field. Our approach thus provides a novel insight into the cause of magnetic instabilities and
allows us to address complicated magnetic instability issues in practical situations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic transition metals, such as iron, and their compounds
and alloys have been drawing continuous attention because of
their diverse magnetic properties and technological applications
including nonvolatile magnetic random-access memory (MRAM),
magnetic sensors and motors, and promising spintronics devices
[1–5]. The behavior of the spin moment in these materials is
regarded as a central issue in this research field. Magnetic insta-
bilities, viz., a rapid or catastrophic change in magnetic ordering
or reversal of magnetic moment with respect to the external
magnetic field and/or mechanical loading, e.g., magnetic phase
transitions and domain switching, essentially characterize the
magnetic behavior of materials and lead to diverse functionalities
or critical malfunction of devices. Magnetic instabilities are often
observed in conjunction with structural lattice instabilities
[6–10], e.g., a ferromagnetic-to-antiferromagnetic phase transition
with a structural change from a body-centered cubic (bcc) to
face-centered cubic (fcc) iron [6,9], which indicates that the strong
coupling between the spin and lattice degrees of freedom (DOFs)
plays an important role. This coupling is particularly important
in magnetic materials at the nanoscale, where a novel magnetic
phase transition occurs because of the characteristic atomic

arrangement, due to the nontrivial effect of surfaces or interfaces
and structural low-dimensionality [11–15]. Thus, understanding
the nature of magnetic instabilities at the nanoscale is both scien-
tifically interesting and technologically important for magnetic
materials.

Quantum mechanical approaches, such as first-principles densi-
ty-functional theory, provide reliable information about the mag-
netic behavior of materials. However, the huge computational
cost restricts model ensembles to an extremely small number of
atoms. Instead, very recently, attempts have been made to con-
struct computationally efficient models of interatomic interactions
to simultaneously describe spin moments and spin–lattice interac-
tions, and several spin–lattice models have been proposed via the
quantum mechanical base by explicitly including the intrinsic spin
DOFs into semi-empirical atomic models with many-body interac-
tions [16–20]. Although these models enable large-scale spin–
lattice dynamics simulations [18,21], the absence of any theory
to describe magnetic instabilities makes it difficult to capture the
onset of magnetic instability events, which generally occur from
only a local site in such a large-scale system. Therefore, an
analytical criterion for magnetic instabilities is essential to detect
such local instability events.

As for mechanical (structural) instabilities, several criteria, such
as the lattice stability criteria and phonon soft modes, were pro-
posed for crystal lattices [22–27]. We previously proposed a crite-
rion to rigorously describe the onset of mechanical instabilities and
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the deformation mode at the instabilities in arbitrary atomic struc-
tures by explicitly taking into account the delicate balance
between the potential energy and work done by an external load
and/or constraint with respect to all the DOFs of atoms [28–32].
The advantage of our theory is its rigor in dealing with arbitrary
structures without any limitation or assumption and its flexibility
for other systems with different degrees of freedom [33–35]. For
example, we successfully extended our theory to instabilities in
dielectrics and ferroelectrics where electric (charge) degrees of
freedom must be taken into account [35]. Thus, it should also be
possible to develop a criterion for magnetic instabilities by extend-
ing our theory to magnetic systems through the incorporation of
the spin and lattice degrees of freedom into the formulation.

In this paper, we propose a criterion for magnetic instabilities in
an atomic system by explicitly including the spin and lattice
degrees of freedom, and validate the proposed theory by applying
the criterion to magnetization switching in ferromagnetic iron
under an external magnetic field. This paper is organized as fol-
lows. Section 2 outlines the theory for magnetic instabilities and
formulates it for a spin–lattice system. Section 3 describes the
simulation procedure and results for the validation of the present
theory. Section 4 presents our conclusion.

2. Proposal of magnetic instability criterion

2.1. Theory of magnetic instabilities for a spin–lattice system

Here, we consider a spin–lattice system consisting of N atoms
with magnetic moments. The potential energy of the system, U,
can be described by the atoms’ coordinates, R, and magnetic
moments, M,

U ¼ UðR;MÞ; ð1Þ

where
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Here, ra
i and ma

i denote the atomic coordinate and the magnetic
moment of atom a (=1, . . . ,N) in the i (=x, y, z) direction. The irre-
ducible number of lattice (atomic) degrees of freedom (DOFs) in
the system is IR = 3N � 6 because the DOFs for the rigid body
translation (3) and rotation (3) are subtracted from the total DOFs
of atoms (3N) [34]. On the other hand, the number of spin DOFs is
IM = 3N. Therefore, the number of lattice and spin DOFs is I = IR +
IM = 6N � 6. Here, an arbitrary deformation and/or perturbation
of the magnetic moment of the system can be represented by a
change in the following I-dimensional vector X consisting of all
DOFs:
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When the system is at equilibrium (X = X0) under a static external
load and/or magnetic field, the total energy of the system, P, con-
sists of the potential energy, U, the work done by an external force,
V, and the work done by an external magnetic field, W, and is given
by

P ¼ U þ V þW: ð5Þ

The total energy of the system in terms of an infinitesimal deforma-
tion and/or perturbation of the magnetic moment, DX, P(X0 + DX),
can be described by the Taylor’s series expansion of the total ener-
gy, P(X0), by DX, and is given by

PðX0 þ DXÞ ¼ PðX0Þ þ
XI
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The second term on the right-hand side (the first derivative of total
energy) is zero because the system is at equilibrium. Owing to the
static loading, the external load is constant and thus the work is
proportional to the displacement of atoms. As a result, we get
[28,29]

@2V
@Xk@Xl

�����
X¼X0

¼ 0: ð7Þ

On the other hand, the second derivative of the work done by exter-
nal magnetic field is not always zero as we will show in the next
section. Ignoring the higher-order terms, the change in total energy,
DP, can be rewritten in terms of an infinitesimal change in the sys-
tem, DX:

DP � PðX0 þ DXÞ �PðX0Þ ¼
1
2

tDXADX; ð8Þ

where A is the I � I Hessian matrix whose components are given
by the second derivative of the total energy with respect to the
DOFs,
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Denoting the eigenvalues of matrix A by gi (g1 6 � � � 6 gi 6 � � � 6 gI),
the matrix is diagonalized using the eigenvector, pi

P�1AP ¼ tPAP ¼
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where P = (p1 . . .pI). Here, the eigenvector pi is normalized.
Introducing

DQ � P�1DX ¼ tðDQ 1; . . . ;DQ IÞ; ð11Þ

the total energy change in Eq. (8) becomes
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2
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In a similar discussion with the previous work [28,29], the critical
condition for instability, DP = 0, appears when the minimum eigen-
value reaches zero, g1 = 0, and the corresponding eigenvector p1 at
g1 = 0 represents the change in magnetic moment and the deforma-
tion of atoms at the instability, i.e., the instability mode vector.

2.2. Formulation of the Hessian matrix on the basis of the spin–lattice
dynamics model

A spin–lattice dynamics (SLD) model is proposed to simulate
the behavior of atoms and spins in magnetic materials [18,21]. In
SLD, each magnetic atom is treated as a classical particle with
intrinsic spins, and the time evolution of the system is analyzed
with the coordinates of the atoms, R, and the unit vectors of the
magnetic moments. Here, the unit vector of the magnetic moment
of atom a, ea, is expressed in terms of ha and /a,

ea
x ¼ sin ha cos /a; ea

y ¼ sin ha sin /a; ea
z ¼ cos ha: ð13Þ

The vector of DOFs, X, is now rewritten as
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