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a b s t r a c t

A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element
method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size
and the anisotropy field strength. Different magnetization processes appear by increasing the size of
the particle. For large particles nucleation and expansion of a reversed domain is observed, separated
by an almost 90� wall. An estimation of the single domain radius Rc is made.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Antiferromagnetic nanoparticles are of great interest for new
composite magnetic materials [1–6], which can be used in applica-
tions like spin valves [7,8] and random access memories (MRAM)
[5,9], so examining the magnetic behavior of antiferromagnets is
of great importance.

Micromagnetism is a widely used theoretical model, due to its
capability of predicting the magnetic behavior of a continuous
medium. According to this model, the magnetization vector is trea-
ted as a continuous function in space [10]. The Finite Difference
Method (FDM) [11,12] and the Finite Element Method (FEM)
[13–15], both with their drawbacks and advantages, are the two
basic techniques in computational micromagnetism. FEM has the
main advantage that it can handle easily large particles and com-
plex geometries. Extensive work has been done, by means of
FEM, on the coupling of an antiferromagnet with a ferromagnet
[16–19], but not for the antiferromagnet itself.

This paper is organized as follows. First, a continuous micro-
magnetic model is presented for a magnetic system consisting of
two sublattices. Then, in order to test the validity of the model,
simulation, under the absence of dipole interactions, of a spherical
uniaxial antiferromagnetic particle by FEM is curried out, in order
to be compared with known analytical calculations. After the vali-
dation, magnetization curves are simulated, under dipole field
interactions, while varying the size and the anisotropy constant
of the particle.

2. The simulation model

An antiferromagnet is composed of two sublattices (A and B) of
equal magnetization norm, Ms and is characterized by a negative
exchange integral between them. In an atomistic model, for each
atom a unique magnetic moment is defined. In a continuous
approximation, as the micromagnetic model, the magnetization
vector is considered a continuous function in space, so the magne-

tization of each sublattice, M
!A and M

!B must be defined at every
point in space.

The evolution of the magnetization vectors is governed by the
damped Partial Differential Equations (PDE) [20]
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where H
!I

eff is the effective field acting on sublattice I ¼ A; Bf g and
can be found from the variational derivative of the micromagnetic
energy with respect to the magnetic polarization [10]. The main
contributions are the exchange, magnetocrystalline, dipole, and
Zeeman energies. Summing up for all the above contributions, an

effective field H
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eff can be defined at every point in space as
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ex is the exchange field acting on sublattice I. The exchange
energy is described by a Heisenberg Hamiltonian
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where i runs for all atoms in the particle and j for the first neighbors
of each atom. In the micromagnetic model discrete atoms cannot be
defined. As already mentioned, at each position~ri inside the particle
the magnetization of each sublattice is defined, and in the neighbor-
hood~rj around this position, each magnetization component can be
approximated by a Taylor expansion as

MI
kð~rjÞ ¼ MI
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n o
;

k ¼ x; y; zf g:
For a symmetric distribution of neighborhood atoms the first order
terms vanish. For an isotropic one, the off diagonal second order
terms vanish too. Under these assumptions, the exchange energy
takes the form:
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where the integration takes place in the particle’s volume, v is the
atomic volume, z is the number of the first neighbors and a is the
first neighbors distance. JAB ¼ JBA are the antiferromagnetic
exchange integrals and JAA ¼ JBB are the ferromagnetic ones. The lat-
ter interactions must be considered seriously and cannot be omit-
ted, because in a continuum approximation there is no validation
of the magnetization norm conservation rule. The terms of the form
M
!I �M!I can be omitted, because they contribute as constants in the
energy expression.

The exchange field for the two sublattices is
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where k ¼ zJAB 2loM2
s v
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is a negative dimensionless mean field

constant, ‘AA ¼ ‘BB ¼ a
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exchange length. In order for the antiferromagnetic order to exist,
the two sublattices must be ferromagnetically stable, so the antifer-
romagnetic exchange length cannot be larger than the ferromag-
netic one. In the limiting case, which was used in the following
simulation results, the two lengths have the same value ‘x.

Assuming a uniaxial anisotropy for each sublattice, with differ-
ent strength and orientation, the magnetocrystalline energy can be
written as
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where KI
1 is the first order anisotropy constant and ûI is the direc-

tion of easy axis. The anisotropy field for each sublattice is

H
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� ûI:

For the simulations presented in this work, both the anisotropy con-
stants and easy axis directions were assumed to be the same for the
two lattices.

For the dipole interactions the energy takes the form:
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where H
!

d is the demagnetizing field and is equal to the gradient
of the magnetic scalar potential for which the Poisson equation
holds [21]

r2/ ¼ �r � ðM!A þM
!BÞ:

The Zeeman energy is written as
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where H
!

is the external applied field.
The governing equations are supplemented by the boundary

conditions @M
!A=@n̂ ¼ 0 and @M

!B=@n̂ ¼ 0, where n̂ represents the
normal unit vector on the surface of the particle.

The six PDE for the magnetization components and the one for
the magnetic scalar potential are solved simultaneously through the
FEM by directly applying the weak form, which is derived by the
Galerkin method. The Poisson equation is solved by applying a
mapped infinite element scheme [22,23], thus an outer domain
surrounding the particle is used. Magnetization is interpolated
using 3rd order Lagrange elements in the domain of a magnetic
particle. For the magnetic potential, 2nd order Lagrange elements
have been used, both on the magnetic particle domain and on
the surrounding outer domain. The time integration was
performed by a variable step size and order BDF method [24]
and the algebraic system of linear equations was solved with
PARDISO [25]. More information about the method used can been
found in [20].

3. Simulation results

Magnetization curves were calculated for a spherical uniaxial
antiferromagnetic particle with the above-mentioned magnetic
parameters for variable radius and anisotropy constant. The exter-
nal field was set parallel to the easy axis direction û, which coin-
cides with x-axis, and was varied from zero to the maximum
value in 106s. As initial condition at all simulations the magnetiza-
tion of the two sublattices was set to M

!
A ¼ Msû and M

!
B ¼ �Msû,

resulting in a zero net magnetic moment.
In order to check the validity of the model, simulations were

made under the absence of dipole field interactions. In this context,
analytic atomistic models describe magnetization process by spin
flip and spin flop transitions [26,27]. Fig. 1 shows calculated magne-
tization curves for spin flop (Fig. 1(left)) and spin flip (Fig. 1(right))
regions. In the first case at spin flop field, Hsf , the magnetization vec-
tors of the two lattices jump coherently to opposite angles (sharp
increment in Fig. 1(left)) with respect to the external field axis. This
state is shown in Fig. 2. Then both lattices gradually rotate towards

Fig. 1. Magnetization curves for a spherical uniaxial antiferromagnetic particle
with k ¼ �1 and R=‘x ¼ 1 without dipole interactions. On the left are spin flop cases
and on the right spin flip cases.
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