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a b s t r a c t

In this paper, the numerical homogenization technique and morphological analysis are used in order to
compute the thermal conductivity in microscale of porous materials. The computational thermal
homogenization is based on a 3D random material with spherical and ellipsoidal pores. Two types of
microstructures are considered: microstructure 1 with random distribution of identical non overlapping
pores and microstructure 2 with overlapping pores, based on the boolean model. The objective is to
quantify the difference between these morphologies, in order to find some relationships between their
morphological parameters and their macroscopic effective thermal conductivities. Periodic boundary
conditions are applied on the representative volume element, RVE, of microstructures, for thermal
modeling by finite element method. The covariance notion and integral range are introduced for morpho-
logical characterization. The deterministic RVE size is related with all microstructure parameters. The
equivalent morphology concept for thermal conductivity is introduced after development of some
relationships between morphological parameters.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Heat transport through porous media is of great interest in
chemical, mechanical, geological, environmental and petroleum
applications. Recent applications of porous media arise in micro-
electronics for electronic packaging and bio-medical engineering.
For these reasons, the determination of the effective linear thermal
conductivity (ELTC) for various porous media is of great practical
interest in the efficient design of industrial equipment. Generally,
two techniques of homogenization are available in this topic, exist-
ing analytical estimates or computational numerical methods. The
homogenization refers to the process of considering a statistically
homogeneous representation of the heterogeneous material, called
deterministic representative volume element (DRVE).

In the early years, analytical estimates for the effective thermal
properties were developed and published in the case of porous
media. For example, Progelhof et al. [1] give a review on methods
for predicting the thermal conductivity of heterogeneous materi-
als. Hashin and Shtrikman [2] proposed a more efficient framework
for two-phase materials named HS bounds. The variational method
is based on solving a problem of inclusions embedded in an infinite

homogeneous matrix. For a further narrowing of the bounds, the
third order bounds (3PB) of the thermal conductivity homogeniza-
tion were developed in [3,4]. Some models or direct estimations
are usually adopted to analyze and predict the thermal conductiv-
ity of porous media, including the two forms of Maxwell-Eucken
models [5] and the effective medium theory model. For more
explanations and mathematical expressions, see [6,7].

In the theory of effective thermal conductivity of mixtures, the
analytical bounds are often used to validate and constrain thermal
conductivity models, see [8]. For a high particles volume fraction
and a high contrast between physical properties of phases, these
bounds are too far apart to give a useful estimate of the effective
properties. Therefore, it is necessary to develop numerical methods
for predicting the effective thermal properties. The finite element
method (FEM) is mainly used to perform a more reliable
homogenization analysis.

Computational homogenization approach is widely utilized in
the multiscale analysis of porous materials in order to obtain the
effective properties. This approach has also been extended to the
thermal field with a variety of applications. For real images of
porous materials, Dorvaux et al. [9] and Grandjean et al. [10] have
developed a method involving two and three-dimensional finite
element calculations based on real micrographs of the ceramic
materials and porous solid. The approach was tested on micro-
graphs with pores ranging from 10% to 50%. For virtual images of
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ceramics, Qiang et al. [11] studied the numerical computational of
the thermal conductivity with FEM. Bakker [12] investigated on the
thermal conductivity of complex porosity by FEM. The effects of
shape, orientation and distribution of the inclusion pores on the
conductivity were studied. Bolot et al. [13] give the computation
of heat transfer through a porous structure using numerical
computation methods. It was also applied to thermal computations
of random open-cell porous materials foams by Kanaun and
Tkachenko [14], Wang and Pan [15], Laschet et al. [16] and Kanaun
and Kochekseraï [17]. The homogenized effective thermal conduc-
tivities were compared there with various theoretical solutions and
bounds. In the case of porous mullite material (is one of ceramic
materials), Barea et al. [18] have studied the effective thermal
conductivity with various particles volume fractions of pores. Tong
et al. [19] have investigated the thermal conductivity of geological
porous media by computational numerical simulations with vari-
ous pores fraction. For three-dimensional (3D) case, the effect of
different boundary conditions on ELTC of random microstructures
(PBC: periodic boundary conditions, UGT: uniform gradient of tem-
perature and UHF: uniform heat flux) is numerically analyzed and
given in Kanit et al. [20].

Kachanov and Sevostianov [21] give the factors having strong
and minor effects on overall conductive properties. They have
shown for conductive properties, any isotropic mixture of diverse
inhomogeneities is equivalent to a certain volume fraction of
spheres. Florez et al. [22] have investigated on effective thermal
conductivity of sintered porous media. They have shown that the
geometry of the porous media solid matrix has an influence on
the effective thermal conductivity.

To study the real effect of pores distribution and shape, it is
necessary to develop another technique, based on microstructure
morphology analysis. The morphology of porous media is charac-
terized in order to obtain some morphological and thermal infor-
mations. Much progress has been made in characterizing the
microstructure of statistically homogeneous two-phase random
media via covariance and integral range. Such investigations are
performed by Torquato [23], El Moumen et al. [24] and Paiboon
et al. [25] for two-phase heterogeneous media with overlapping
and non-overlapping spherical particles.

In this study, the computation of effective thermal conductivity
in porous materials is proposed using numerical and statistical
approaches. The first microstructure containing spherical pores
without any contact between neighboring spherical pores and
the second morphology with overlapping spherical pores. An
equivalence between these microstructures is proposed. The
numerical results are compared with available analytical solutions,
such as HS bounds, 3PB, self consistent estimate (SC) of [26] and
Maxwell-Eucken (ME) models.

After a general introduction, Section 2 outlines the microstruc-
ture generation and the subsequent finite element discretization.
Section 3 presents numerical homogenization and details of
results. Section 4 presents benefits of identifying and using statis-
tical and morphological parameters and finally, in Section 5, these
results are discussed.

2. The microstructure generation and the FE discretization

In this investigation, thermal numerical computations of porous
materials, containing a random distribution of identical spherical
or ellipsoidal pores are presented. Two types of microstructures
are considered: microstructure 1 with non-overlapping spherical
or ellipsoidal pores and microstructures 2 with overlapping pores,
based on the boolean model of spheres. Fig. 1 illustrates the
different positioning probabilities of two neighboring spherical
pores in the microstructure of porous materials. Three different

configurations controlled by a repulsion distance a were consid-
ered in this study, as shown in Fig. 1.

To generate the simulated microstructures, first pick points:
M1;M2; . . . ;Mi; . . . ;Mn in space at random locations, according to
a Poisson process, see Fig. 2a. Next, construct pore i of each center
Mi, with respecting a given repulsion distance a between neighbor-
ing pores in microstructure 1, and without respecting any
repulsion distance for overlapping pores in microstructure 2. For
ellipsoidal pores generation, the morphology of materials is
completely defined by giving the center of each pore Mi, its princi-
pal radii a, b and c and its three orientation angles ai; bi and ci.
These angles are also randomly chosen according to the Poisson
process, see Fig. 2a. An example of 3D simulated microstructure
with a random distribution of non-overlapping spherical and ellip-
soidal pores in the space, obtained by Poisson process, is presented
in Fig. 2b. As a result of microstructures generation, Fig. 3 shows
examples of random implantation of overlapping and non-overlap-
ping voids in porous materials based on the boolean model.

The regular finite element (FE) mesh is superimposed on the
image of the porous microstructure using the so-called multi-
phase element technique. It should mention that this technique
was developed by Lippmann [27] and extensively used by Kanit
et al. [20] and El Moumen et al. [28] for homogenization of virtual
and real 3D images. Indeed, an image of the microstructure is used
to attribute the phase property to each integration point of a reg-
ular mesh, according to the color of the underlying voxel. Fig. 4
gives an example of the 3D microstructure and its FE structured
and unstructured (free mesh) meshes. For numerical simulations,
we prefer to use the structured meshes because the free mesh
technique usually leads to larger numbers of elements, then more
expensive in terms of computational cost. The considered elements
are quadratic bricks of 20-nodes and 27-integration points per FE.

Both phases, matrix and pores, present a linear thermal con-
ducting. The considered thermal conductivity for matrix phase is
ranging from km ¼ 0:3 to 14.5 W/m K and for pores ki ¼ 0:024 W/
m K. The pore volume fraction f is also ranging from f ¼ 0:05 to 0.5.

For mathematical morphology analysis, four cases are chosen:

� Case 1: km ¼ 0:3 W=m K and ki ¼ 0:024 W=m K with contrast
c ¼ km=ki ¼ 12:5.
� Case 2: km ¼ 0:5 W=m K and ki ¼ 0:024 W=m K with contrast

c ¼ km=ki ¼ 20:8.
� Case 3: km ¼ 0:6 W=m K and ki ¼ 0:024 W=m K with contrast

c ¼ km=ki ¼ 25.
� Case 4: km ¼ 14:5 W=m K and ki ¼ 0:024 W=m K with contrast

c ¼ km=ki ¼ 604.

3. Computational thermal simulations

3.1. Governing and constitutive equations

Generally, the 3D heat conduction is described by Fourier’s law
and given by:

q ¼ �krT ð1Þ

where q is the thermal flux, k is the symmetric thermal conductivity
tensor, T is the temperature and rT its gradient.

In elasticity problems, the boundary conditions are at the root
of the energetic definition of effective elastic properties. Similar
boundary conditions are prescribed for linear thermal conducting
problems on the elementary porous microstructure volume V, see
[29] for criterion and governing equations. In this study, we are
concerned with random porous microstructures, and for this type
of materials, the periodic boundary conditions converge faster in
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