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We present a comparative study of different computational methods with respect their ability to predict
the impact resistance of thin structures. The focus will be on meshless methods and smoothed finite
method (SFEM). SFEM emerged from meshless methods and promises to inherit their effectivity in mod-
eling large deformations while maintaining the computational efficiency of finite elements. The methods

are applied to perforation and penetration experiments. Particularly for perforation experiments we
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show that the residual velocity of the impactor is predicted independent of the discretization in meshless
methods while the results of smoothed finite element method depend on the mesh size.
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1. Introduction

The computational prediction of impact resistance of solids and
structures remains a challenge due to the extreme nature of this
physical events. It often involves finite strains, inelastic large defor-
mation and the nucleation and propagation of an extreme number
of cracks. The development of partition-of-unity methods such as
the extended finite element method [1,2], generalized finite ele-
ment method [3-5] or phantom node method [6-9] significantly
advanced the state-of-the-art of fracture modeling. However, those
methods were mainly applied in two dimensions for a moderate
number of cracks, see e.g. [10-15]. There are comparatively few
contributions that deal with finite strains and large inelastic
deformations, dynamic fracture and fragmentation that requires
the simulation of an enormous number of cracks. Other recent
advances in fracture modeling such as finite element methods with
edge rotation [16-19], phase field methods [20,21] or the eigen-
strain approach [22] are so far also applied mainly to problem with
few cracks.

Finite element methods rely on a mesh and in impact simula-
tions, the deletion of elements is almost inevitable. Commonly,
the deleted elements are replaced by rigid masses in order to guar-
antee the conservation of mass. However, often the energy balance
is not guaranteed. Meshless methods provide a powerful alterna-
tive as they do not rely on a mesh. Hence, they are ideal suited
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to model large deformation events [23-29], dynamic fracture and
fragmentation [30-39]. Popular meshless methods include the ele-
ment-free Galerkin method [40,41], reproducing kernel particle
method [42], Smoothed Particle Hydrodynamics [43-45] method,
to name a few. Other recent method are based on Local Maximum
Entropy (LME) shape functions, radial basis functions [46,47], etc.
An excellent overview of meshless methods is given in [48,49].
One of the key applications of meshless methods were fracture
modeling [50-53] and problems involving large deformations as
they occur in impact or explosion events as stated above. Parti-
tion-of-unity enriched meshless methods similar to XFEM were
developed by [54-63] and applied to problems involving only a
few cracks. Such methods have also been extended to complex frac-
ture involving fluid-structure-interaction [64,65]. A very efficient
method to model large inelastic deformations and dynamic fracture
is the cracking particles method (CPM) [66] that does not require
any representation of the crack surface. The CPM has been applied
to numerous problems [67-73] including shear bands [74-76],
impact and explosion [77-81]. Though meshless methods are gen-
erally capable of modeling large deformations, they suffer from an
instability [27,82-84]. Rabczuk et al. [85] suggested the use of
Lagrangian kernels that eliminate the instability but the Lagrangian
kernel restricts the applicability of such methods to moderate defor-
mations. In [78,86] the use of an updated Lagrangian kernel was
therefore proposed. Formulations based on updated Lagrangian ker-
nels guarantee stability and applicability to large deformations.
One major drawback of meshless methods is their high compu-
tational cost which is associated to the more complex construction
of the shape functions and the higher number of integration points
required to reduce integration errors. A very efficient way to
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perform integration in meshless methods is the stabilized con-
forming nodal integration (SCNI) [87]. The SCNI technique has
meanwhile been adopted in the smoothed finite element method
[88-92]. It is based on so-called smoothed strains. Integrals are
evaluated at the boundaries instead of the interior and the shape
functions are directly formulated in the physical space avoiding
any parametric mapping. SFEM has been applied to many interest-
ing problems [93-112] including fracture [113-118]. It has been
shown that they are insensitive with respect to mesh distortion.
However, this advantage has barely been exploited for modeling
impact problems.

In this manuscript, we systematically study the performance of
one specific meshless method and the smoothed finite element
method with respect to their ability predicting the impact resis-
tance of structures. In the next section, we briefly review the meth-
ods we used before we briefly describe the constitutive models
used. Subsequently, the governing equations are stated and the
fracture and element deletion model is described. Section 5 shows
the computational results which are compared to experimental
data. We conclude our manuscript in the last section.

2. Meshless method and smoothed finite element method

We will study the element-free Galerkin (EFG) method [40] that
is given by the following approximation:
u'(Xt) = a(X,t) pX.t) (M)

u"(X,t) being the displacement field depending on time t and spa-
tial co-ordinates X and a(X,t) and p(X,t) are the unknown coeffi-
cients and the polynomial basis. As in many other manuscripts,
we employ a linear polynomial basis. The EFG method is based on
the minimization of a discrete norm

J=@X ) pX,t) - D) WX, t) (X, t) p(X,t) - D) (2)

with respect to the unknown coefficients that finally yields the
approximation

h(X t) = N(X,t) D(t)
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where D indicate nodal parameters, W(X,t) is a diagonal matrix
that contains the weighting functions w; we use the cubic B-spline.
We would like to emphasize that an updated Lagrangian kernel is
used. Therefore, the reference configuration is updated every n-th
time step; n was chosen between 50 and 100 in our simulations.
Hence, the material coordinates X refer not to the initial configura-
tion but to the updated reference configuration. More details can be
found for example in [40,85].
In our coupled thermo-mechanical model, we also discretize
the temperature field T(X, t) with EFG-shape functions:

T"X,t) =NX,t) T, 4)

where T(t) is the vector that contains the nodal parameters associ-
ated to the temperature field.

In the Smoothed Finite Element Method (SFEM), the compatible
strains are replaced by so-called smoothed strains:

€j(x°) :/Q €;'P(x — x°) dQ (5

=

¥ (x — x¢) denoting a smoothing function that has to obey the fol-
lowing rules:

Px—x) > 0, /Q Px—x) dQ =1 (6)

The key idea of SFEM is to construct smoothing domains as shown
in Fig. 1. The integration is done along the boundaries of these
smoothing domains Qc. There are different ways to construct the
smoothing cells and we found the most robust method is based
on 2 so-called sub-cells as illustrated in Fig. 1. Choosing a constant
smoothing function

Wx - xC) = {# xeQf
0 elsewhere

where A® = [, dQ denotes the area of the smoothing domain, the

smoothing function can be taken out of the integral in Eq. (5). The

volume integral can then be transformed into a boundary integral

by the Gauss divergence theorem yielding
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the superscript S indicates symmetric term and n denotes the nor-

mal vector of a smoothing side. The strain field
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in SFEM depends now only on the shape functions themselves and
not their derivatives:

bi(x) 0
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and

by (xC) — % /r Ni(x)n(x) dr (10)

Moreover, they are evaluated in the physical space and integration is
performed along the smoothing sides making them insensitive to
mesh distortion. Only one quadrature point is needed to exactly eval-
uate the integrals for 3-node triangles and 4-node quadrilaterals:

by(x) = > _Ni(x))mf1; (1)
J=1

X; denotes the position of the quadrature point at the boundary seg-
ment on F]C; lf and nf indicate their length and normal, respectively.
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Fig. 1. Subcells for an smoothed finite element; circular dots denote FE nodes and
square shaped dots denote quadrature points located at the line segments of the
subcells.
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