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a b s t r a c t

Solid-state phase transformations are influenced by strains that are generated internally or applied
externally. The stress state, composition, and microstructure evolution, which together determine the
properties of solid materials can be studied using phase-field models coupled with micro-elasticity
theory in the small strain limit. This coupling has been implemented using various schemes in literature.
In a previous article (Durga et al., 2013), the authors evaluated three main existing schemes for a two-
phase system and concluded that these schemes are not quantitative for inhomogeneous anisotropic
elastic properties of the two phases. The stress states predicted by these models deviate from the
expected values due to the generation of extra interfacial energy, which is an artefact of the models
resulting from interfacial conditions different from local mechanical equilibrium conditions. In this work,
we propose a new scheme with interfacial conditions consistent with those of the analytical results appli-
cable to a general system where shear strains may be present. Using analytical solutions for composition
and stress evolution, we validate this model for 2D and 3D systems with planar interface in the presence
of misfit between phases and applied strains, and a 2D system with an elliptical second-phase particle.
This extended scheme can now be applied to simulate quantitatively the microstructural evolution with
coupled chemical and mechanical behaviour in any 2D or 3D two-phase system subject to internal or
external strains irrespective of interface curvature.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Phase-field models are used to solve moving boundary
problems such as phase transformations in solid and liquid states
and transport phenomena involving fluid flow or mass diffusion,
which involve elastic, magnetic, electrochemical and other physi-
cal effects. The main advantage of this method is the use of a dif-
fuse interface between different domains. This is represented by
one or more phase-field variables which vary continuously across
the interface. The evolution of the system is then driven by the
minimisation of total free energy, which is a function of the
phase-field variables in space and time. In this article, a quantita-
tive phase-field model considering the effects of chemical diffusion
and linear elasticity on microstructure evolution in solid-state
materials is presented.

Phase-field models coupled with microelasticity theory have
been extensively applied to study various phenomena such as mar-
tensite transformations [2], grain growth, and texture evolution

[3]. Several schemes are available in literature that combine micro-
elasticity theory with phase-field models. Steinbach-Apel’s scheme
(SAS) [4], Voigt-Taylor’s scheme (VTS) [5,6], and Khachaturyan’s
scheme (KHS) [7] are the three main existing schemes. They differ
in the way the elastic strain, stress, and elastic constants are
defined in the diffuse interface, which in turn causes a difference
in the elastic contribution to the driving force for the system evo-
lution. There have been only limited [4,5,8] comparative studies of
these schemes with analytical solutions, especially for complex
morphologies of inhomogeneous systems and the coupling with
chemical equilibrium.

In ‘thin interface’ phase-field models [9], the interface width is
generally taken abnormally large compared to the actual physical
interface width in materials. In order to provide reliable results,
we need to use quantitative models, i.e. those that do not depend
on the value of the diffuse interface width used in the phase-field
model. The results have to be independent of the value of the inter-
face width as long as the microstructural features of interest are
larger than the interface width. Such quantitative phase-field mod-
els are available for studying phase transformations and diffusion
in multiphase systems [10], solidification [11] and grain growth
[12]. These models ensure that the bulk energy of the system is

http://dx.doi.org/10.1016/j.commatsci.2014.11.057
0927-0256/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +32 16 373734.
E-mail addresses: durga87@gmail.com (A. Durga), patrick.wollants@mtm.

kuleuven.be (P. Wollants), nele.moelans@mtm.kuleuven.be (N. Moelans).

Computational Materials Science 99 (2015) 81–95

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2014.11.057&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2014.11.057
mailto:durga87@gmail.com
mailto:patrick.wollants@mtm.kuleuven.be
mailto:patrick.wollants@mtm.kuleuven.be
mailto:nele.moelans@mtm.kuleuven.be
http://dx.doi.org/10.1016/j.commatsci.2014.11.057
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


decoupled from the interfacial energy that arises due to the diffuse
interface. Coupling phase-field models with elasticity, however,
presents a complication due to the presence of many inter-related
tensorial quantities such as the elastic strain, the elastic stress,
stiffness, and the displacement fields. Therefore, a simple analogy
with the other quantitative models does not exist. Examples of
quantitative phase-field models with tensorial fields include that
of Nicoli et al. [13], which uses mobility tensor for a two-phase
system with different interpolations for different components of
the tensor, and Yeon et al. [8], wherein a quantitative elastic
phase-field model for binary coherent two-phase systems with
stiffnesses of cubic symmetry is presented.

In a previous work [1], the authors studied a two-phase inho-
mogeneous system separated by a planar interface and showed
that the interpolation of elastic properties in phase-field models
following the schemes of KHS, SAS, and VTS are not quantitative,
i.e., the bulk properties depend on the diffuse interface width used
in the model and excess interfacial energy is created due to the
elastic energy formulation. The three schemes are quantitative
only under special circumstances: KHS when the elastic strains
are equal in the two phases, SAS when the stresses are equal in
the two phases and VTS when the total strains are equal in the
two phases. We then introduced a new quantitative scheme which
uses interfacial conditions that are consistent with the analytical
results. We validated this scheme for a 2-D two-phase system with
a planar interface in the absence of shear strains. However, in order
to be applicable to a general two-phase system with arbitrary
interface curvatures and shear strains in 2-D and 3-D, the model
needs to be further developed and validated.

The aim of this work is to extend and validate the new scheme
for 2D and 3D two-phase systems with shear strains, arbitrary
interface curvature, and no restriction on the nature of the elastic
constants. The model is validated for the following cases of two-
phase systems using corresponding analytical solutions: (i) planar
interface with shear strains and applied strains in 2D and 3D (John-
son’s analytical model [14]) and (ii) elliptical precipitate in a large
matrix in 2D (Jin et al.’s analytical solution [15]).

The rest of the paper is organised as follows. First, we discuss
analytical solutions available for 2D and 3D systems in Section 2.
Then, the phase-field model used in this study is given in Section 3.
The coupling of elastic energy with the phase-field model using the
new quantitative scheme is formulated in Section 4. Section 5
discusses the simulation results for the different cases and the
main conclusions are drawn in Section 6.

2. Analytical solutions

Starting with a brief introduction to microelasticity theory, we
present analytical solutions available in the literature for 3 cases:
Johnson’s description [14] for 2D and 3D systems with planar
interface, and Jin et al.’s solution [15] for a 2D system with an ellip-
tical second-phase precipitate. These will be compared with results
from the phase-field simulations in order to validate the model.

2.1. Microelasticity theory

We consider a coherent two-phase system. No assumptions are
made about the nature of the elastic moduli. Undeformed a phase
is taken as the reference state for the calculation of eigenstrain. The
stresses and strains are defined in the system according to
Khachaturyan [7]. The elastic stress in the small-strain regime,
where linear elasticity theory holds, is given by:

rij ¼ Cijkl�el
kl; ð1Þ

where Cijkl is the stiffness tensor and �el
kl the elastic strain. Einstein

summation notation is used for all equations involving tensors in
this article.

Elastic strain is defined as:

�el
kl ¼ �kl � ��kl ¼ �kl þ d�kl � ��kl; ð2Þ

where �kl = �kl þ d�kl is the total strain. ��kl is the eigenstrain given by
the relative difference in the lattice parameters of the two phases.
Taking underformed a as the reference state, the eigenstrains are
then zero in the a phase and typically non-zero in the b phase. �kl

is the homogeneous or applied strain defined such thatZ
V

d�kld
3r ¼ 0: ð3Þ

The heterogeneous strain d�kl is related to the local displacement
fields uið~rÞ as

d�kl ¼
1
2
@ukð~rÞ
@rl

þ @ulð~rÞ
@rk

� �
: ð4Þ

The elastic energy density is then given by:

f el ¼ 1
2
�el

ij Cijkl�el
kl: ð5Þ

At mechanical equilibrium, @rij

@rj
= 0.

2.2. Johnson’s model

Johnson’s description gives the conditions for interfacial
mechanical and chemical equilibrium. In Sections 2.2.1 and 2.2.2,
the mechanical equilibrium is given for 2D and 3D systems with
planar interfaces respectively. In Section 2.2.3, the equilibrium
compositions in the presence of strains is given, which can be
calculated on knowing the stress state of the system.

2.2.1. 2D system with misfit between phases and applied strains
Considering a 2D rectangular two-phase system as shown in

Fig. 1(a), the equilibrium interfacial relations for the stresses and
strains are as follows. There is continuity of displacements and
tractions at the interface:

ua
i ¼ ub

i ; ð6Þ
ra

ijn
a
j þ rb

ijn
b
j ¼ 0; ð7Þ

where nj are the components of the outward pointing unit normals
to the respective phases at the interface. From the geometry,
na

1 ¼ �nb
1 and na

2 = nb
2 = 0. For i = 1, (7) gives ra

11 = rb
11, and for i = 2,

ra
12 = rb

12. Expanding these two equalities, we get
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With the no-slip condition in this geometry, the displacements

do no vary in the ‘2’ direction. Therefore, d�a22 = @ua
2

@r2
= 0 = @ub

2
@r2

= d�b
22.

From (3), when the areas of a and b phase are equal,

d�a11 ¼ �d�b
11; ð10Þ

d�a12 ¼ �d�b
12: ð11Þ

From (8)–(11), we can solve for d�a11 and d�a12. From the global

mechanical equilibrium condition, @rij

@rj
= 0, all the strain

components and thereby, the stress components, are constant
within their respective phases. The non-zero heterogeneous strain
and elastic stress components in the two phases are illustrated in
Fig. 1(b).

82 A. Durga et al. / Computational Materials Science 99 (2015) 81–95



Download	English	Version:

https://daneshyari.com/en/article/1560430

Download	Persian	Version:

https://daneshyari.com/article/1560430

Daneshyari.com

https://daneshyari.com/en/article/1560430
https://daneshyari.com/article/1560430
https://daneshyari.com/

