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a b s t r a c t

The purpose of this work is to investigate how well the temperature dependence of the elastic constants
of single crystal zirconium, magnesium and gold are reproduced by ab initio density functional theory
(DFT). The modelling was conducted via the quasi-harmonic approximation with the exchange–correla-
tion functional based on the local density approximation. For gold and magnesium, the low and high tem-
perature dependency agrees well with measurements, whereas the transition between low and high
temperature ranges occurs over a wider range of temperature than observed experimentally. For zirco-
nium, the simulations qualitatively predict the temperature dependence of the isentropic elastic con-
stants, where C12 and C13 increase with increasing temperature. Because this behaviour is absent for
the isothermal elastic constants, the increase can be attributed to the transformation from isothermal
to isentropic elastic constants.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The elastic constants of a material are important quantities that
dictate many fundamental properties and characteristics that are
essential in a wide range of applications. Their most fundamental
use is to describe the strain energy and the relation between the
elastic stress and strain fields of a body subjected to arbitrary tri-
axial loading through Hooke’s Law [1]. However, they also play a
central role in other contexts in solid state physics, for instance
when describing the phonon frequencies in the long wave length
limit [1] and predicting phase stability [2].

As with other fundamental physical properties, as a result of
thermal vibrations the elastic constants vary with temperature
and the variation is material specific. By surveying the literature
on temperature dependent elastic properties of cubic metals it is
seen that all elastic constants decrease with increasing tempera-
ture and that the magnitude is material specific [3]. For instance,
for noble metals it has been observed that the elastic properties
can decrease by 10% or more when the temperature is increased
from about 0 K to 500 K [4–6]. For other more complex crystals,
such as tetragonal (b-Sn) and orthorhombic (a-U, BaSO4), the tem-
perature dependent elastic constants do not behave as straightfor-
ward as for cubic materials and the elastic constants may increase
or decrease with increasing temperature [3]. The same holds for
hexagonal-closed-packed (HCP) materials for which it has been

found that C12 and/or C13 may increase with increasing tempera-
ture [3]. Such examples include the group IVB transition metals
(Zr, Ti and Hf [7]) for which C12 increases with increasing temper-
ature, whereas for group IIA (Be [8,9] and Mg [10]) it is found that
C12 and C13 are roughly constant. Meanwhile for group IIB materi-
als (Zn [11,12] and Cd [13]) C12 does not vary significantly, but C13

decreases with increasing temperature. This demonstrates that
despite the HCP materials have the same lattice structure, the elas-
tic constants behave differently when increasing the temperature
and to some accounts counterintuitively. It further implies that
the electronic structure rather than the lattice geometry dictates
its behaviour.

In order to find a unified description of the temperature depen-
dent elastic properties, a great deal of experimental work has been
performed in which some universal characteristics that are in com-
mon to most materials have been identified. For instance, the elas-
tic tensor is constant in the low temperature limit and varies
linearly at high temperatures. This has resulted in several empiri-
cal mathematical formulae, derived to reproduce these characteris-
tics and to fit the experimental data [14–16]. Thus, for most
formulations there is no theoretical justification for the analytical
expressions other than their good fit and therefore they show lim-
ited success when applying them to materials other than those
considered in the experiments. Two exceptions to this course of
action, in which the analytical descriptions of temperature depen-
dent elastic properties are based on a theoretically sound rationale,
are the semi-empirical relations by Wachtman et al. [17] and
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Varshni [18]. To fit the elastic properties of oxides, Wachtman et al.
[17] adopted an empirical relationship whose format was chosen
only based on its good fit to experimental results. Although Wacht-
man et al. did not give any theoretical justification for its format, it
was later proven that it could be derived from the Mie-Grüneisen
equation of state [19], which explains its success in describing
the experimental data. Varshni [18], on the other hand, assumed
a completely theoretical approach for deriving a seminal equation,
which is based on a simple Einstein oscillator model and the Leib-
fried–Ludwig assumption [20] that the temperature dependent
elastic properties depend on the average thermal energy of an
oscillator. This simple, yet powerful, relation has proven to predict
the temperature dependent elastic properties of several materials
with many different crystallographic symmetries with high accu-
racy. Despite the two analytical models have different functional
formats and are derived from different rationales, they predict very
similar temperature dependent elastic characteristics.

In order to supplement experimental work, quantum mechani-
cal density functional theory (DFT) is a reliable numerical tool
which has been used in numerous investigations to extract the
elastic properties of metals, alloys and earth forming minerals.
However, with only a few exceptions, such studies have been lim-
ited to modelling the elastic properties at low temperature. The
reason for this is related to the significant numerical expense asso-
ciated with calculating phonon densities of states required to
describe the free energy within the quasi-harmonic approximation
(QHA) [21]. Despite this, researchers have studied the temperature
dependence of the calculated elastic constants of aluminium [22],
tungsten [23], beryllium [24,25] and diamond [24], with varying
degrees of success. In particular it has been shown that the elastic
properties in the zero-temperature-limit and that the magnitude of
the temperature dependence of the elastic constants do not neces-
sarily correspond to those observed in experiments. These works
demonstrate that the DFT/QHA approach predicts the general
trends of the temperature dependent elastic constants, but yields
a qualitative description at best.

The main purpose of this work is to investigate the temperature
dependent elastic constants of zirconium and magnesium by DFT
modelling within the QHA. The motive behind modelling zirco-
nium is because the elastic properties of zirconium obtained from
elastic wave velocity experiments have shown that C12 increases
with increasing temperature [7] and it is of interest to investigate
what causes such behaviour and if it can be captured by first prin-
ciples modelling within the QHA. This is of importance because of
the wide use of zirconium based alloys as fuel cladding in nuclear
power reactors, for which the temperature dependent elastic prop-
erties play a central role in making lifetime predictions. Magne-
sium has the same lattice structure as zirconium and similar
lattice parameters, but belongs to a different group in the periodic
system and has a different electron structure than zirconium. From
experiments it has been observed that the temperature dependent
elastic constants of Mg behave differently from those in Zr. In par-
ticular it has been found that C12 and C13 do not vary with temper-
ature, but rather remain constant throughout the measured
temperature range. The differences and the counter-intuitive
behaviour of these materials make it interesting to investigate
the temperature dependence of the elastic constants using DFT/
QHA, to see whether first principles modelling can give a qualita-
tive explanation to what causes them to behave this way.

There are several reasons for why we choose to study gold in
addition to the aforementioned HCP metals. Most theoretical
works associated with the temperature dependent elastic con-
stants have been limited to cubic or isotropic metals, which is
why most of the analytical closed form expressions are not valid
for HCP metals. Because gold is widely used as a calibration stan-
dard for high pressures and temperatures, there is a scientific value

to study how well DFT predicts the elastic properties over a wide
range of temperature. And finally, the experimentally measured
temperature dependent elastic constants for gold are well-docu-
mented in the literature and there is little discrepancy between
sources. For these reasons gold serves as a benchmark study for
investigating the predictability of the adopted DFT/QHA approach,
which is why it is included in this work.

The paper is organised as follows. In the following section we
discuss elasticity theory, transformation from isothermal to adia-
batic elastic constants and the Varshni relation and its implications
for the temperature dependent elastic properties, which is
followed by a thorough exposition of the modelling and numerical
details. Thereafter we present the results: phonons, lattice param-
eters and thermal expansion for the considered materials, which
are followed by discussions and analyses of the temperature
dependent elastic properties of gold, zirconium and magnesium.
The paper is concluded with a short summary and conclusions.

2. Elasticity

2.1. Elastic theory

The second order isothermal elastic tensor, CT
ijkl, can be defined

as the volume specific second derivative of the Helmholtz free
energy, F, with respect to a homogeneous deformation of the body,
i.e.,

CT
ijkl ¼

1
V0

@2F
@�ij@�kl

ð1Þ

where �ij represents the strain tensor and V0 is the reference vol-
ume. A suitable measure for the strain tensor is the Green–Lagrange
strain tensor, whose components are related to the deformation
gradient tensor, Fij, via

�ij ¼
1
2
ðFkiFkj � dijÞ ð2Þ

where dij is the Kronecker delta and the deformation gradient is a
linear mapping relating the coordinates of the reference configura-
tion, Xi, to the deformed configuration, xi, i.e. xi ¼ FijXj [26].

At most a material has 21 independent elastic constants, but
depending on the symmetry of the crystal lattice, the number of
independent elastic constants can be significantly reduced. For
materials with cubic symmetry, such as gold, they are reduced to
three: CT

1111; CT
1122 and CT

1212 (or CT
11; CT

12 and CT
44, respectively, in

Voigt notation [27]). Depending on the conditions of the experi-
ment or simulations performed, different types of elastic constants
are extracted. Extracting the elastic constants from DFT calcula-
tions based on the Helmholtz free energy conducted within the
QHA implies that they correspond to those obtained under isother-
mal conditions. However, resonance based experiments, such as
elastic wave velocity measurements, resemble to a greater extent
those of adiabatic conditions. Therefore, to make useful compari-
sons with experimental data it is necessary to transform isother-
mal elastic constants to isentropic. For cubic materials this can
be achieved by using the conversions

CS
11 ¼ CT

11 þ D; CS
12 ¼ CT

12 þ D; CS
44 ¼ CT

44 ð3Þ

where D is the conversion factor

D ¼ V0Ta2ðCT
11 þ 2CT

12Þ
2

Cv
ð4Þ

in which a is the linear thermal expansion coefficient, Cv is the spe-
cific heat capacity and T is temperature [28]. Thus, C44 remains
invariant when transforming from one thermodynamic condition
to another. Likewise, by using the definition of isentropic and
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