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a b s t r a c t

We propose a stochastic framework based on sensitivity analysis (SA) methods to quantify the key-input
parameters influencing the Young’s modulus of polymer (epoxy) clay nanocomposites (PCNs). The input
parameters include the clay volume fraction, clay aspect ratio, clay curvature, clay stiffness and epoxy
stiffness. All stochastic methods predict that the key parameters for the Young’s modulus are the epoxy
stiffness followed by the clay volume fraction. On the other hand, the clay aspect ratio, clay curvature and
the clay stiffness have an insignificant effect on the Young’s modulus of PCNs. Besides the results on the
sensitivity of the input parameters, this work includes a comparative study of a series of stochastic
methods to predict mechanical properties of PCNs with respect to their performance.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Polymer (epoxy) clay nanocomposites (PCNs) have been studied
extensively as a new generation of polymeric materials and
received wide interests in the research community of material
sciences and engineering due to their exceptional thermal and
mechanical properties. The clay particle structure is either exfoli-
ated or intercalated. For enhanced functional properties of nano-
composites at the same clay concentration the former is
preferred [1]. An exfoliated PCN was developed by the Toyota
group by synthesizing a nylon 6/clay nanocomposite [2,3]. They
reported that the mechanical properties (tensile modulus and
strength) of nylon 6/clay nanocomposites were significantly
improved even at low clay concentrations. It is believed that the
enhanced properties of PCNs strongly depend on the clay aspect
ratio and the mechanical properties of the nanoclay. After
pioneering success in the nylon 6/clay system, the nanocomposite
technology has been extended to other polymeric systems, includ-
ing elastomers [4,5] and epoxies [6,7]. It was shown that enhance-
ment of the thermal/mechanical properties in the polymeric
nanocomposites is sensitive to the particular polymer chosen.

Analytical and numerical predictions of the overall composite
stiffness have been extensively studied [8]. A comprehensive
review of micromechanical models fiber-reinforced polymers, such
as Halpin–Tsai [9] and Mori and Tanaka [10], was outlined by
Tucker and Liang [11]. Analytical studies [12,13] suggest that the
high clay stiffness, high aspect ratio and volume fraction are the
key parameters governing the stiffness of clay nanocomposite.
Sheng et al. [14] proposed a multiscale finite element method
(FEM), accounting for the hierarchical morphology of the PCNs,
to predict the macroscopic properties of PCNs by using the so-
called ‘effective particles’ in which the model parameters such as
the particle volume fraction, particle aspect ratio and orientation
and particle/matrix property ratios were taken into consideration.
Scocchi et al. [15] developed a bottom-up approach to study the
relative macroscopic properties of PCNs. Fermeglia and Pricl [16]
proposed a hierarchical procedure for bridging the atomistic and
macroscopic results through mesoscopic simulations.

As the mechanical properties of a certain polymer clay nano-
composite system are affected by multiple uncertain parameters
such as the clay volume fraction, clay aspect ratio, clay curvature,
clay stiffness and epoxy stiffness, a comprehensive study of the
effects of such above-mentioned parameters on the mechanical
behavior of PCNs is required. So far, the stochastic effects of these
parameters on the mechanical properties have not been quantified.

In this article, we conduct a comprehensive global sensitivity
analysis (SA) based on a stochastic modeling of PCNs. The finite
element (FE) analysis is used to predict the stiffness of the fully
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exfoliated PCNs within the framework of the stochastic modeling.
Based on a micromechanical approach, a homogenized Young’s
modulus is computed at the meso-scale. Subsequently, different
SA methods are employed to quantify the influence of the input
parameters on the PCN Young’s modulus. A bootstrap technique
has been performed in order to assess the robustness of different
SA methods.

The article is outlined as follows. In the next section, we briefly
describe the FE model and homogenization techniques. Section 3
presents the complete statistical distribution for each input param-
eter. Different SA methods are described in Section 4. The surrogate
model is presented in Section 5. The coefficients of surrogate
model, sensitivity indices and bootstrap confidence intervals for
the sensitivity indices will be detailed in Section 6 before the
article ends with a discussion on the numerical results and the
concluding remarks.

2. Model for PCN

We focus on PCNs that are built using the slurry compounding
process. The epoxy resin is diglycidyl ether of bisphenol A
(D.E.R.TM 332) and the curing agent is diethyltoluenediamine
(Ethacur 100-LC, Albemarle). The pristine clay is sodium montmo-
rillonite (MMT) [17–20].

Models of various periodic representative volume elements
(RVEs) of the epoxy matrix filled with exfoliated clay platelets
(particles) that are randomly oriented and dispersed are con-
structed. Fig. 1 shows a detailed view of the FE mesh inside the
RVE of the PCN. The micromechanical FE model was implemented
in ABAQUS as detailed in [21].

In this work, we assume a simplified case of perfectly bonded
particles in an isotropic matrix.

2.1. Homogenization

2.1.1. RVE definition
The RVE approach uses the solution of the homogenization for

an original heterogeneous medium to obtain an equivalent
homogeneous one that is able to substitute the heterogeneous
(polymer/platelet) material. Hence, the RVE size should be defined
so that the RVE contains enough information to reasonably
simulate an infinite medium.

Since the RVE is randomly generated, the ensemble of many
realizations (RVEs) needs to be generated to create a good statisti-
cal representation of the PCN. In other words, we replace a large
RVE that reasonably simulates an infinite medium by a statistical

ensemble of RVEs for sake of computational efficiency. The number
of realizations is determined such that the entire ensemble con-
tains the same amount of information as a large one.

The ensemble average is given by Spencer and Sweeney [22]

hRi ¼ 1
M

XM

k¼1

RðkÞ; ð1Þ

where RðkÞ is a response measured in the k-th RVE ðk ¼ 1;2; . . . ;MÞ;
M is the number of RVE realizations in the ensemble. In order to
estimate convergence of the statistical ensemble, the saturation
criterion was used

hRðkþ1Þi � hRðkÞi
hRðkÞi

�����
����� < Tol ¼ 1%; ð2Þ

where RðkÞ denotes an expected value of k realisations, and Rðkþ1Þ is
averaged over kþ 1 realizations. Eq. (2) allows to recognize whether
the result reaches a reasonable accuracy.

2.1.2. Boundary conditions
Usually, three types of BCs can be applied to the RVE, namely

linear displacement, uniform traction and mixed type BCs (which
includes periodic BCs). For linear elasticity, there is an ordering
relationship among the results which are obtained from those
three kinds of BCs [23]. This ordering relationship finally motivates
the use of periodic BCs in case of periodic structures [24,25].

In practical applications, periodic BCs are also used in case of
non-periodic microstructures. It has been shown in numerous
numerical studies that periodic BCs yield a fast convergence rate
of the effective properties with respect to (w.r.t.) the size of the
RVE [26–28]. The periodic BCs are imposed on the RVE as shown
in Fig. 2 by applying a displacement on a rigid reference node that
is kinematically coupled with the RVE edges in the axial direction
so that the displacements of all boundary nodes are identical to
those of the equivalent node on the opposite edge.

2.1.3. RVE generation algorithm
The characteristics of the clay particles (their aspect ratio

(length), curvature (radius) and stiffness) are randomly generated
according to predefined sets of statistical distributions [22], e.g.
all clay particles have the same aspect ratio, curvature radius, stiff-
ness, and the clay particles are randomly dispersed in the epoxy
matrix. The resulting clay particle configurations are ideal for
estimating the influence of each particle-characteristic on the
mechanical response. A scheme of the RVE generation algorithm
is shown in Fig. 3.

Firstly, the control parameters including the number of RVEs for
each value of clay concentrations (volume fraction), the size of the
RVE, the clay length, curvature and orientation distribution are set.
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Fig. 1. A detailed view of the mesh.
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Fig. 2. Boundary conditions imposed on the RVE: (left) an undeformed RVE and
(right) a deformed RVE.
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