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a b s t r a c t

Based on the assumptions of periodicity and separation of two length scales, a 3D computational
homogenization model is developed for porous material. The method is implemented based on the finite
element method by assuming linear material behavior. Numerical examples show that the variation of
pore geometry and spatial distribution will result in much higher level local stress concentration
compared to the macroscale smeared out stress, apart from bringing the material properties in transition
to transverse isotropy. The convergence studies and the comparison to the reference/analytical solution
show that the linear computational homogenization is an effective method for modelling the linear
elastic porous materials.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Porous materials are of significant interest in many engineering
applications such as the porphyrite and lamprophyre as high
porosity ignites rock, aerated concrete and polyfoam, to name a
few. For natural materials, the statistical information of pore struc-
tures, void ratio, void geometry and their spatial distribution can
be used as the input parameters to analyze the material deforma-
tion. For artificial materials, such as polyfoam, the pore distribution
can be optimized to improve the material performance and obtain
the optimal techno-economy balance. Therefore, for both types of
materials, there is a strong need to develop a numerical model
for better prediction of the mechanical behavior. The mechanical
behavior of porous materials is heterogeneous at various length
scales. The microstructure is usually an assembly of complex
geometry such as particulate or fibrous inclusions or voids. The
material properties and morphology of the microstructure has a
significant impact on the macroscopic behavior of the composite
materials. The microstructural morphology refers to the shape, size
and spatial distribution of the microstructural constituents. Deter-
mination of the macroscopic properties of composite materials is
an essential problem in many engineering applications. Studying

the relation between microstructure and the macroscopic proper-
ties not only allows to predict the behavior of the existing compos-
ite materials, but also provide a method to design the material
microstructure with the desirable macroscopic properties.

The local degradation in the ‘‘micro’’-structure accompanied by
irreversible local geometrical changes [1,2] will result in a non-
linear macroscopic response. The characterization of such behavior
by macroscopic closed-form constitutive laws is difficult, due to
the complex mathematical model and high computational costs
involved in identifying the design parameters [3]. Therefore, the
need arises for a strong coupling between the evolving microstruc-
ture and the macroscopic response. Numerous modelling strate-
gies have been developed to predict the relations between the
microstructure and macroscopic properties in composite materials.
The effective medium model is established by Eshelby [4] and fur-
ther developed by Hashin and Shtrikman [5], Budiansky [6], Mori
and Tanaka [7]. The effective medium model is an analytical or
semi-analytical method. The macroscopic properties are derived
by solving the boundary value problem for a spherical or ellipsoi-
dal inclusion in an infinite matrix. The self-consistent approach
of Hill [8], Christensen and Lo [9] is an extension of the effective
medium model. The variational bounding method of Hashin and
Shtrikman [10], Castañeda and Suquet [11] provide upper and
lower bounds for macroscopic properties. Another homogenization
approach is asymptotic homogenization method of Bensoussan
et al. [12] and Sánchez-Palencia [13]. To generate the complex
microstructure and to develop the computational methods, the
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unit cell methods by Nakamura and Suresh [14] and Van der Sluis
et al. [15] have been widely used. Early models employ hierarchical
multiscale approaches based on analytical or semi-analytical
homogenization. However, all the formulations are difficult to
extend to the non-linear behavior and coupled field interactions.
Recently a multiscale computational homogenization technique
has been developed. The homogenization approach have been ini-
tiated by Suquet [20], Guedes and Kikuchi [21], Terada and Kikuchi
[22], Ghosh et al. [23,24] and developed by Smit et al. [25], Miehe
et al. [26], Michel et al. [27], Terada and Kikuchi [28], Ghosh et al.
[29], Kouznetsova et al. [30], and Miehe and Koch [31]. A popular
homogenization approach is the semi-concurrent FE2 method
[16], which employs Representative Volume Elements (RVEs).
The FE2 approach has been developed inter-alia for non-linear
materials [17], higher order models [18] and coupled (thermo-
mechanical) problems [19]. In the homogenization method it is
not required to estimate constitutive equations at the macroscale,
instead the stress–strain law is computed at the critical material
points. Existing works on multiscale methods are limited mainly
based on the FEM [46,52,53], or coupled FE-molecular dynamics
[47,54,56–63,75] techniques. It would be interesting in the future
to explore the potential of other novel numerical methods to deal
with the moving boundary problems such as meshless methods
[39–45,48–51,64–71] and other types of discontinuum based
methods [55,72–74].

Past work on the computational homogenization for heteroge-
neous materials normally assumes the media to be continuous or
includes 2D microcracks (line segments) or 3D initial damage ten-
sors, which does not include the volume loss. In otherwords, the
void structures were considered explicitly to include 3D micro-
structural details of the void geometry. In this paper, the computa-
tional homogenization is employed and extended for porous
materials. The motivation of the present work is to include the
3D porous structures at the microscale model for porous materials,
considering the statistical geometry features of the pores. Our
interest is to estimate the change in the bulk material properties
with the design parameters of pore structures.

The content of the paper is outlined as follows. In Section 2, the
homogenization model is described. The implementation issues of
the model in ABAQUS are detailed in Section 3. Section 4 shows the
performance the model and the effects of microscale porous struc-
tures on material parameters at macroscale through two numerical
examples. The paper is concluded in Section 5 with the suggested
topics for future studies.

2. Computational homogenization of porous material

2.1. Assumptions of the model

The porous material is assumed to be macroscopically homoge-
neous and microscopically heterogeneous when the microstruc-
ture consists of inclusions, grains, interfaces and cavities. Most
computational homogenization approaches make two assump-
tions [32], as illustrated in Fig. 2.1.

The first assumption is the separation of the lengths scale into
micro and macro-scales. The microscale length is assumed to be
much larger than the molecular dimensions, so that a continuum
approach is justified for the microstructural constituents. And the
microscale length is much smaller than the macroscale length, so
that the microstructural heterogeneities can be reflected.
Therefore,

lmolecular � lmicro � lmacro ð1Þ

where lmolecular is the length at nanoscale; lmicro, lmacro are the length
of micro and macro-scales, respectively.

The second assumption is the periodicity of the microstruc-
tures. Most of the homogenization approaches assume that the
microstructures vary periodically over the whole macroscopic
domain. But in the computational homogenization approach, the
microstructures are different corresponding to different macro-
scopic points and repeat themself in the vicinity of different mac-
roscopic points, such as the microstructures of M and N in Fig. 2.1.
According to the periodicity assumption, it is natural to anticipate
the periodic variation of the properties and response of the porous
material. Two different scales x and y, associated respectively to
the material properties and responses at the macroscale and
microscale, are assumed. The relation between the spatial micro-
scale and macroscale coordinates is as below:

yi ¼
xi

e
ð2Þ

where xi (i = 1,2,3) are the macroscale coordinates; yi are the micro-
scale coordinates; e� 1 is a scale factor between the macroscale
and the microscale.

By means of the coordinates defined above, the periodicity
assumption of the material properties and responses on the micro-
scale can be expressed as given below:

f eðxiÞ ffi f ðxi; yjÞ ¼ f ðxi; yj þ KYjÞ K ¼ 1;2 . . . ð3Þ

where fe(xi) is the properties or response function of the material,
the superscript e indicate that the function fe(xi) registers all the
properties or response over the microscale and Yj is the period of
the microstructure.

2.2. The governing equations

Consider a problem domain Xe with boundary Ce composed of
heterogeneous linear elastic material. The microstructure of Xe

consists of periodically distributed representative volume element
associated with smaller domain denoted as H. The governing
equation of linear elastic problem may be expressed based on
the Einstein’s convention for tensor notation [33] as

re
ij;xj
þ bi ¼ 0 in Xe; ð4Þ

re
ij ¼ Le

ijmnee
mn in Xe; ð5Þ

ee
mn ¼

1
2
ðue

m;xn
þ ue

n;xm
Þ in Xe: ð6Þ

The displacement and traction boundary conditions applied to
the domain are

ue
i ¼ ui in Ce

u; ð7Þ
re

ijnj ¼ ti in Ce
t ; ð8Þ

where the subscript i, j, m, n 2 {1,2,3}, re
ij; ee

mn, ue
i ; Le

ijmn are the
components of stress, strain, displacement and constitutive tensor
respectively, bi is the body force vector, ui; ti are the prescribed
displacement and traction, Ce

u, Ce
t are the displacement and traction

boundary, nj is the outward normal vector of the boundary. The sub-
script xi, yi refer to the spatial coordinates of macroscale and micro-
scale. The spatial gradient operator in the governing equations is
applied as

f e
;xi
¼ @f
@xi
þ 1

e
@f
@yi

f e
;yj
¼ @f
@yi

: ð9Þ

2.3. The asymptotic expansion to approximate the displacement field

Assuming the material responses of the macroscale x and the
microscale y are related, the displacement field can be approxi-
mated by using the asymptotic expansions of e as in [34] that
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