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a b s t r a c t

Molecular dynamics simulations using the embedded atom method (EAM) potential were carried out to
study shear behaviors of single crystal copper at different temperatures. Shear tests were set in the (111)
crystallographic plane along the ½�110� and ½11 �2� directions, respectively. The period of shear stress–shear
strain curves was observed when shear was set along the ½�110� direction. Microtwins arose during the
shear process along the ½11 �2� direction. Shear modulus obtained from the slop of shear stress–shear
strain curves is on the level of 40.0 ± 1.5 GPa at 0 K and decreases with increasing temperature, and per-
forms insensitivity to the size of shear model and shear direction. Simulation results also indicate that the
EAM potential is adequate to describe the shear behaviors of single crystal copper. In addition, this work
also shows that the classical description of shear modulus is still efficient at the nanoscale, which might
suggest a simple and direct way to obtain shear modulus in atomic scale.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dislocations and stacking faults are important microstructures
in most metallic materials, which have well-known crucial effects
on the plastic deformation of materials and the processes such as
work hardening [1,2]. In the theory of deformation of crystals, both
of those mechanisms intimately relate to the shear modulus. In
classical theory, shear modulus is defined as the ratio of shear
stress to shear strain, which measures the rigidness of materials.
In materials science, shear modulus is an important parameter to
describe the characters of dislocations, such as stress fields and
strain energy of a dislocation, forces between dislocations, stacking
fault energy. On that account, knowledge of shear modulus is fun-
damental for describing plastic behavior of metallic materials in
their response to dislocations and stacking faults.

To date, several theoretical methods are investigated to calcu-
late the shear modulus, such as numerical models [3,4] and molec-
ular dynamics (MD) simulations [5,6]. Heino et al. [5] simulated
shear modulus of copper at room temperature using an MD
method with effective-medium theory. Luo et al. [6] applied the
quantum Sutton–Chen potential via MD simulations to study shear
modulus of nickel as a function of temperature. Varshni [3]
proposed the mechanical threshold stress (MTS) model to describe
the evolution of shear modulus with respect to temperature.

Although some numerical modeling of shear modulus of face-
centered crystals has been reported, to our knowledge little work
has been done for single crystal copper at different temperatures
using MD simulations with an EAM potential. Additionally, the
applicability of a classical description for shear modulus at nano-
scale remains unclear.

In this work, shear modulus of single crystal copper was inves-
tigated via MD simulations using an EAM potential at different
temperatures along the ½�110� and ½11 �2� shear directions, respec-
tively. We show that there is no appreciable difference of shear
modulus along those two shear directions. The modulus is insensi-
tive to the size of the shear model and decreases with increasing
temperature. Those simulation results are in good agreement with
the MTS model and show that the classical description of shear
modulus is still efficient at the nanoscale.

2. Model and simulation method

An orthogonal simulation box for testing shear was built with
cross-sectional dimension in 3.5 nm � 3.1 nm, while the dimen-
sion in the [111] direction varies for each simulation cases, as
shown in Fig. 1. Atoms in the top and bottom three layers were
held fixed, named rigid group and fixed group, respectively, while
the remaining part was simulated as in free motion, namely free
group. The rigid and fixed group in all models used in this study
consist 576 atoms, respectively, while the number of atoms in free
group varies around 2000 depending on the numbers of atomic
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layers. Shear experiments were investigated via displacing the
rigid group parallel to the fixed group in the (111) crystallographic
plane. Periodic boundary conditions were imposed to the system in
directions parallel to shear plane.

MD simulations were performed with LAMMPS, a classical MD
code that models an ensemble of particles in a liquid, solid, or gas-
eous state. Short- or long-range forces are modeled with Newton’s
equations of motion for collections of atoms with a variety of initial
and/or boundary condition (http://lammps.sandia.gov). A constant
strain rate of 0.005% ps�1 was applied to displace the rigid group
horizontally in the ½�110� and ½11 �2� directions, respectively. After
each imposed displacement increment, the structure was relaxed
for a time of 5 ps. The forces between atoms in the simulation sys-
tem were calculated via an EAM potential, which was specially
developed for metals [7,8] and was proved to be able to well de-
scribe the metallic bonding in single crystal copper [9]. In the sim-
ulations, the equations of motion were integrated with a time step
of 0.5 fs, where the velocities of atoms were rescaled to control the
temperature of the entire system.

In this paper, shear modulus is computed as following

G ¼ s
e

ð1Þ

where s denotes shear stress, e is shear strain, which are defined as

s ¼ f
A
; e ¼ Dx

l
ð2Þ

where f denotes applied shear force, A is the area that force acts on
(the cross-section of model in this work), Dx is applied displace-
ment due to applied shear force, l is the height of free group along
the [111] direction in the shear model. The applied shear force in
those two shear directions (fx or fy) [10] can be determined by
imposing a displacement on the rigid group.

3. Results and discussion

Shear behaviors of a single crystal of copper with different
heights of the free group were explored. Here the number of free
atomic layers normal to the [111] direction corresponds to the
height of the free group. Fig. 2 presents shear stress–shear strain
curves of copper at 0 K with different specified numbers of free
atomic layers when shear is set along the ½�110� and ½11 �2� crystal-
lographic directions, respectively. As can be seen from Fig. 2(a),
shear stress increases with increasing shear strain up to a thresh-
old value that is defined as the shear strength, but further increase
in shear strain leads to a steep drop of stress. Interestingly, the

stress decreases to a negative value and oscillates around zero as
shear strain increases and then presents the same tendency as ini-
tial. It can be said that the shear stress–shear strain curves behave
periodically. Our calculation shows that when the shear displace-
ment is

ffiffi

2
p

2 � a, where a denotes the lattice constant, the shear
stress–shear strain curve completes one period for a model with
one free atomic layer. It should be noted from Fig. 2(a) that two
and three periods occur for models with three and five free atomic
layers when shear displacement is

ffiffiffi

2
p
� a and 3

ffiffi

2
p

2 � a, respectively,
corresponding to the same shear strain (e = 0.62). In other words,
more periods of shear stress–shear strain curve occur, with the
same shear strain, for models with more atomic layers. Note that
shear distance with

ffiffi

2
p

2 � a results in one period of shear stress–
shear strain curve, independent with the number of free atomic
layers in shear model. For the cases with shearing in the ½11 �2�
direction, as shown in Fig. 2(b), a different phenomenon of the
shear stress–shear strain appeared. A series of vibrational pertur-
bations emerge at the beginning of the shear stress–shear strain
curve, followed by periodic variations. This behavior might be re-
lated to the atomic trajectory during shearing in the ½11 �2� direc-
tion, which will be addressed later.

The trajectory of atoms was traced during the shear procedure.
Fig. 3 displays the schematic of the trajectory of a specified atom
colored in red in the free group moving in the (111) plane along
the ½�110� and ½11 �2� directions, respectively. Obviously, the red
atom is initially located at the center of the blue triangle formed
by three blue atoms, as indicated with site r. With increasing
shear strain, blue atoms are frozen at their ideal positions, and
the red atom moves from site r to s along the shear direction
at the beginning, where translational motion varies when shear
is set along different directions. When further shear is applied
along the ½�110� direction, as shown in Fig. 3(a), the red atom can-
not overcome the obstacle formed by two blue atoms and instead
moves from site s to t, followed by a series of deviations before
returning to the original site where the shear starts, performing the
same configuration as initial status, as indicated with sites r and
w. This period in the trajectory of atoms corresponds to the period
of shear stress–shear strain curve. By contrast, when shear is
set along the ½11 �2� direction, the red atom moves in the triangle
I at the beginning of shear, then traverses the barrier between
the two peaks comprised of two blue atoms, and arrives at triangle
II, as shown in Fig. 3(b). As shear continues, the atom moves for-
ward the peak shaped by one blue atom, leading to increasing
stress until maximum value, as indicated with label w in Fig. 2.
And then the atom cannot traverse the peak and moves to triangle
III through the valley between two blue atoms. Finally, it locates at
the center of triangle III. Considering the periodic boundary condi-
tion in the ½�110� and ½11 �2� directions, the final configuration pre-
sents the same with initial one, as indicated with sites r and y.
The trajectory of atoms relates to the stress they are suffering. Dur-
ing one period motion in ½11 �2� direction, the red atom passes three
triangle areas successively with more special locations than those
when shearing in the ½�110� direction with the same numbers of
free atomic layers, which can explain why vibrational perturba-
tions appear when shear was set along the ½11 �2� direction. It
should be mentioned that twinning and stacking faults easily occur
when shear is along the ½11 �2� direction [11], which was also ob-
served in this study, as shown in Fig. 4. It can be seen that many
microtwins appear during shear process in the ½11 �2� direction. Par-
ticularly, the more free atomic layers, the more opportunities for
the formation of twinning and stacking faults. This might also take
responsibility for vibrations of shear stress–shear strain curves and
more vibrations for models with more free atomic layers, as shown
in Fig. 2(b). As a result, shear stress–shear strain curves have differ-
ing characteristics at the beginning stage of the shear test along the
½�110� and ½11 �2� shear directions, respectively.

Fig. 1. Shear setups with fixed group and rigid group in green and blue,
respectively. The remaining part in yellow is free group in which atoms are free
to relax in time. Shear tests were carried out in the ½�110� and ½11 �2� directions,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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