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a b s t r a c t

Metamaterials usually refer to artificial composite materials consisting of an array of periodically
arranged microstructures, engineered to provide unusual material properties that may not be easily
found in nature. This paper proposes a new topological shape optimization method for systematic
computational design of a type of mechanical metamaterials with negative Poisson’s ratios (auxetic
materials), which integrates the numerical homogenization approach into a powerful parametric level
set method (PLSM). The homogenization method is used to obtain the effective properties of the periodic
microstructure, while the PLSM is applied to achieve shape evolutions and topological changes of the
microstructure, until the desired material properties are achieved. The key concept of the PLSM is the
interpolation of the implicit level set surface by using a given set of compactly supported radial basis
functions (CSRBF), which are positioned at a number of given and fixed knots inside the design domain.
Several typical numerical examples are used to demonstrate the favorable characteristics of the proposed
method in the design of micro-structured metamaterials.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Metamaterials [46,52] are artificial materials engineered to
have unconventional effective properties that cannot be easily
obtained in nature. They are usually characterized by assemblies
of a number of periodic microstructures fashioned with conven-
tional materials, such as metals or plastics. Thus the layout of the
microstructure has a great impact on the properties of metamate-
rials. In general, metamaterials gain extraordinary properties from
their microstructures rather than from their material composition.
Due to the exotic properties, metamaterials are experiencing
popularity in a number of new and emerging areas. Over the past
two decades, several types of metamaterials have been developed
for a diverse of applications in science and engineering, e.g. electro-
magnetic metamaterials [46,66,65,26,42], mechanical metamateri-
als [28,17,38] and acoustic metamaterials [11]. However, this
paper is focused on the design of a family of elastic metamaterials
with negative Poisson’s ratios [28,38], which are also known as
auxetic metamaterials (Evans and Alderson).

The Poisson’s ratio of a solid is defined as the ratio of transverse
contraction strain to longitudinal stretching strain under uniaxial

tension. It is a fundamental metric to measure the performance
of elastic materials and facilitates the contemporary understanding
of the mechanical properties of modern materials [18]. Although
the classic theory of elasticity allows the Poisson’s ratio to be
negative, most conventional materials in nature possess positive
values. In contrast to materials with positive Poisson’s ratios, neg-
ative Poisson’s ratio materials exhibit counter-intuitive properties:
expanding laterally when stretched and contracting laterally when
compressed. Since the work (Lakes 25), the auxetic metamaterials
have attracted increasing attention, due to their potential in a
range of applications. However, only a limited number of natural
materials [10,63] and artificial structures [43,17] have been re-
ported to exhibit negative Poisson’s ratios. Several intuitional and
heuristic methods have been developed to generate auxetic
metamaterials [62], but the systematic design approaches are still
in demand for creating novel auxetic metamaterials.

In the past two decades, topology optimization has been
expanding as a powerful computational design tool for a broad
range of structures and materials [7,16,24,51]. Essentially,
topology optimization is a numerical iterative process that distrib-
utes a given amount of material inside a fixed design domain to
seek the best material layout, such that the objective function is
optimized subject to a set of constraints. So far, there have been
several methods developed for topology optimization of structures,
e.g., the homogenization method [5,19,3], the evolutionary
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structural optimization method [58,25], the element density SIMP
method [64,6], the nodal density SIMP approach [20,27,37], and
the level set based method (LSM) [45,55,1]. Amongst a number
of applications of topology optimization, one of the most promising
applications may be the optimal design of micro-structured mate-
rials [47,48,50,21].

As aforementioned, since the layout of the microstructure plays
an important role in determining the effective properties of the
material, it is of great interest to apply topology optimization
methods to achieve the optimal material layout of the periodic
microstructure (unit cell). Several topology optimization methods
can be used to design the unit cell of micro-structured materials
in this field. For instance, the inverse homogenization method
(IHM) [47] has been widely applied to achieve optimal topology
of the periodic microstructure for the design of various metamate-
rials, such as the metamaterials with desired properties
[47,29,14,66] or even extreme properties [48,22,50], and the
metamaterials with multiphysics properties [21,26]. However, it
can be seen that the above studies mainly based on the material
density-distribution topology optimization methods [7]. The mate-
rial density-based topology optimization methods have experi-
enced considerable popularity due to their conceptual simplicity
and numerical easiness [7]. However, there are several numerical
instabilities to be carefully handled [49], they may result in opti-
mized designs characterized with unfavorable numerical features
[55,1,16,24], such as zigzag material interfaces and ambiguities
of intermediate element densities. To facilitate the fabrication of
the final design, additional post-processing schemes have to be
employed to threshold element densities to enable a distinct, as
well as a smooth interface.

The LSM [44,41] has recently emerged as a new method for
shape and topology optimization of structures. After the pioneer’s
work of [45], several methods [1,2,55,56,60,61,12,15] have been
developed for topological shape optimization within the context
of standard LSM [40,44]. The standard level set methods have been
applied to different design problems, including the design of
acoustic [30] and photonic metamaterials [66,42], which may be
less successful due to the intrinsic shortcomings of their design
methods. One of the major concepts behind these LSMs is to repre-
sent the design boundary of a structure implicitly as the zero level
set of a higher dimensional level set function (LSF). Then, the mo-
tion of the design boundary is mathematically described as a Ham-
ilton–Jacobi partial differential equation (H–J PDE) [40], in which
the normal velocity field to enable the evolution of the design
boundary is often obtained using the shape derivative method
[53,13]., one common characteristic of the above LSMs, categorized
as conventional LSMs, is that they essentially track dynamic
boundary by directly solving the H–J PDE using the finite difference
method, e.g. up-wind schemes [55,1].

The LSMs can provide unique benefits in optimizing shape and
topology of a structure, in particular, smooth boundary and dis-
tinct interface, shape fidelity and topological flexibility, integrated
shape and topology optimization [55,1,32,16]. However, the con-
ventional LSMs involve several unfavorable numerical features in
topological shape optimization. For example, the global re-initial-
izations are required to be periodically applied [55,1] to recover
the signed-distance shape of the LSF, by avoiding the generation
of a too steep or too flat LSF. Moreover, the CFL (Courant–Fried-
richs–Lewy) condition must be satisfied to ensure the numerical
stability in solving the H–J PDE [40,41]. Since the CFL condition
states that each marching step size in space is no more than
the smallest size of the grid, this will typically lead to a large
number of iterations for a dense mesh. Furthermore, the final de-
sign will largely depend on the initial guess, due to no mecha-
nism being included to create new holes inside the domain [9].
It is noted that [32,16,39] these issues have limited the further

application of LSMs to more advanced topological shape optimi-
zation problems.

More recently, several alternative LSMs (e.g., [4,23,31–36]) have
been developed for topological shape optimization of structures, to
avoid the above numerical issues in the conventional LSMs. One of
the common features in these LSMs is to optimize the shape and
topology of structures, without directly solving the H–J PDE using
up-wind schemes. In particular, [32,31] have proposed a paramet-
ric level set method (PLSM) for topological shape optimization of
continuum structures. In this method, the compactly supported
radial basis function (CS-RBF) [8,57] was utilized to achieve the
interpolation of the implicit LSF, and then the design boundary
was advanced by iteratively updating a set of unknown expansion
coefficients of the interpolant. The PLSM has shown its ability as a
powerful topological shape optimization method for structures
[32,31], which can remain the favorable while avoid unfavorable
numerical issues of the conventional LSMs. Particularly, many
well-established gradient-based optimization algorithms, includ-
ing the optimality criteria (OC) [4,32] and mathematical program-
ming methods [23,31] an be directly applied to the LSMs.

This paper will develop a new topological shape optimization
method for computational design of mechanical metamaterials,
which systematically integrate the numerical homogenization
method that is used to predict the material effective properties,
with the PLSM that is employed to optimize the shape and topol-
ogy of the unit cell. The proposed method shows unique merits,
especially suits the topological shape design of micro-structured
artificial composites. In particular, the proposed method naturally
bridges the level set equation with many more effective and effi-
cient optimization algorithms, compared to the original PDE-dri-
ven topological shape optimization using the finite difference
method (FDM). Furthermore, the proposed method is general, be-
cause it can be applied to design other elastic metamaterials, as
well as photonic and phononic (seismic, acoustic) metamaterials.
This paper is the first time to extend the PLSM to the design of
metamaterials. Several numerical examples will be presented to
demonstrate the effectiveness of the proposed method in the opti-
mal design of engineered metamaterials.

2. Parametric level set method

2.1. Level set-based boundary representation

As mentioned above, in the level set-based structural optimiza-
tion methods, the first element is to implicitly represent the design
boundary of a structure by the zero level set of a higher dimen-
sional LSF with Lipschitz continuity [40]. For instance, Fig. 1 shows
the representation of a two-dimensional boundary with a three-
dimensional level set surface, where / is used to denote different
parts of the reference domain, as follows:

uðxÞ > 0 8x 2 X n C ðsolid regionÞ
uðxÞ ¼ 0 8x 2 C ðdesign boundaryÞ
uðxÞ < 0 8x 2 D n ðX [ CÞ ðvoid regionÞ

8><
>: ð1Þ

Fig. 1. (a) Three-dimensional LSF; and (b) design domain with the zero level set.
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