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a b s t r a c t

The flow of an oil–water two-phase fluid in an inclined pipe exhibits fundamentally different behaviors

to that of a vertical two-phase flow, especially the flow commonly presents complex countercurrent

flow structure due to the influence of gravity. The understanding of inclined oil–water flow is of

important significance for flow measurement and production optimization. We using multi-scale cross

entropy (MSCE) analysis investigate the nonlinear dynamics of inclined water-dominated oil–water

two-phase flow patterns which are Dispersion oil-in-water-Pseudoslugs (D O/W PS), Dispersion oil-in-

water-Countercurrent (D O/W CT) and Transitional Flow (TF). We find that the rate of low-scale cross

entropy can effectively identify flow patterns, and the high-scale cross entropy can represent their

long-range dynamics. The research results show that the multi-scale cross entropy analysis can be a

helpful tool for revealing nonlinear dynamics of inclined oil–water two-phase flow in terms of micro-

scopic and macroscopic views.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Inclined oil–water two-phase flow is commonly encountered
in wellbores; however, its hydrodynamics behavior under a wide
range of flow conditions is still relevant unsolved problem. It is
crucial to understand the flow pattern dynamics for production-
engineering applications and predictions of liquid holdup and
pressure drop.

In early studies, semi-empirical and semi-theoretical methods
were often employed in the study of inclined oil–water two-
phase flow. Mukherjee et al. (1981) studied the effect of input
liquid fraction and inclination angles on water holdup and friction
pressure gradient, and found that the maximum friction pressure
gradient at phase inversion point and oil–water slippage were
both functions of inclination angles. Hill and Oolman (1982)
found that the most troublesome effect of well deviation on
production logging tool response is the non-uniform phase dis-
tribution across the pipe and observed a kind of segregated
flow pattern with water phase occupying most of the pipe and
steady reverse flow of water along the bottom pipe. Davarzani
et al. (1985) observed stratified flow and stratified wavy flow
in a 160 mm ID pipe at inclined 301. Zavareh et al. (1988)
concluded that countercurrent bubble flow pattern exists in the
inclined pipe. Vigneaux et al. (1988) reported the experimental

measurements of inclined oil–water flow in a 20 cm ID pipe, and
presented the distribution of the local water volume fraction
across a pipe section using local high-frequency probes. Tabeling
et al. (1991) found that the main factors of controlling flow
structure are the mean liquid holdup and deviation angle, and
they proposed a phenomenological model for local holdup pre-
diction. Mobbs and Lucas (1993) presented a turbulence model
for inclined liquid–liquid flows and predicted the qualitative
features of large amplitude unsteady eddy motions in inclined
two-phase flows. Lucas (1995) described a mathematical model
which provides an initial estimate of the velocity profile of an
inclined multiphase flow. It is worth to point out that Flores et al.
(1999) made a comprehensive experimental study in vertical and
inclined oil–water flows with 50.8 mm ID pipe. They summarized
seven flow patterns in inclined oil–water flows with four water-
dominated, two oil-dominated and a transitional flow pattern
(TF). The water-dominated flow patterns include Dispersion of
oil-in-water-Pseudoslugs (D O/W PS), Dispersion of oil-in-water
Countercurrent (D O/W CT), Dispersion of oil-in-water Cocurrent
(CC) and Very fine dispersion of oil-in-water (VFD O/W). The oil-
dominated flow patterns are Dispersion of water-in oil (D W/O)
and Very fine dispersion of water-in-oil (VFD W/O). Oddie et al.
(2003) investigated gas–water, oil–water and oil–gas–water
multiphase flows in 150 mm ID inclinable pipe by using several
water holdup measurement techniques. Lum et al. (2006) found
that oil plug flow pattern existed at inclined 801 and 851, and the
stratified wavy flow pattern would disappear at inclined 951 in
38 mm ID. Gao and Jin (2009) and Gao et al. (2010) developed
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a complex network-based method to uncover the nonlinear
dynamics leading to the formation of different patterns in multi-
phase flow systems and achieved interesting and significant
results. Kumara et al. (2010) utilized particle image velocimetry
(PIV) to study the flow structure of oil–water flow in horizontal
and slightly inclined pipes in the range from 51 upward to 51
downward, and they found the velocity and turbulence profiles
were strongly depended on the pipe inclination. Strazza et al.
(2011) focused on the core-annular flow pattern boundary pres-
sure drops, and oil hold-up measurements in horizontal and
slightly inclined pipes and showed the experimental data had a
good agreement with the classical models.

Since the multiphase flow is a typical nonlinear system,
characterizing inclined oil–water two-phase flow from measured
signals has attracted many attentions and some progresses have
been made in applying the nonlinear analysis method (Oddie,
1991; Daw et al., 1995; Wu et al., 2001). In our previous study, we
using the chaotic attractor geometry morphology characterized
the inclined oil–water two-phase flow, but the proposed method
can only identify D O/W PS and D O/W CT, cannot reveal dynamic
characteristics of flow patterns (Zong et al., 2010).

Entropy, which is the useful complexity measure for dynamic
systems, plays a significant role in studying dynamic character-
istics. The concept of Shannon entropy (Shannon, 1948) is defined
as the probability distribution of a random variable and can be
shown to be a good measure of uncertainty. Pincus (1991) devised
a theory for measuring regularity, named approximate entropy,
which has been widely applied to the physiological and other time
series analysis. Then based on approximate entropy, Richman and
Moorman (2000) developed a new and related complexity mea-
sure, i.e., sample entropy, and compared both approaches by using
them to analyze sets of random numbers with known probabilistic
character. Zhuang et al. (2008) indicated that sample entropy
method was more appropriate than approximate entropy in
quantifying the short-term heart rate variability signals. Costa
et al. (2002a, b) introduced multi-scale entropy (MSE) for complex
time series analysis and found that MSE robustly separated and
well interpreted healthy and pathologic groups. Recently, MSE can
not only well analyze physiologic time series (Thuraisingham and
Gottwald, 2006; Bornas et al., 2006) but also can be widely applied
to other fields, such as environment (Li and Zhang, 2008), metal
materials (He et al., 2008).

Pincus and Singer (1996) and Pincus et al. (1996) proposed
cross-approximate entropy to measure the degree of dissimilarity
of two concurrent, non-stationary biological signals. Then
Richman and Moorman (2000) provdied an indication between
two time series, by a correlation of their sample entropy, to give a
statistic termed cross-sample entropy, which provided an indica-
tion of the degree of synchronizing between the signals.
A significant drawback of cross-sample entropy is the estimation
of the embedding dimension. Based on MSE and cross-sample
entropy, Yan et al.(2009) developed a novel algorithm, named
multi-scale cross entropy (MSCE), to assess the dynamical char-
acteristics of coupling behavior between two sequences on multi-
ple scales. They showed that the analysis of MSCE can be used to
measure cross-correlation and coupling behavior between two
time series in either physical systems or physiological systems.

In multiphase flow field, entropy is sensitive to the flow
pattern characteristics and can act as an efficient diagnostic tool
for revealing the flow pattern transition mechanism. Zhang and
Shi (1999) calculated Shannon entropy of two-phase flow systems
from the power spectral density and showed Shannon entropy
could be a factor to measure the system stability. Zhong and
Zhang (2005) found that Shannon entropy could be used to
identify the flow regimes and helped to grasp the complex
characteristics of dynamic behavior in spout-fluid beds. And the

multi-scale entropy is helpful to understand the nonlinear
dynamic characteristics of gas–water flows (Zheng and Jin,
2009). Although the rate of MSE at low scales sensitively indicates
the variation of flow patterns, it cannot identify the flow patterns
at high scales. Aiming at this problem, we introduce MSCE
expecting to well identify the flow patterns at all scales and
further understand dynamics of inclined oil–water two-phase
flow in microscopic and macroscopic views.

2. Multi-scale sample entropy and multi-scale cross entropy

2.1. Multi-scale sample entropy

The algorithm of multi-scale sample entropy is shown as
follows:

1. Given a one-dimensional discrete time series {u(i): i¼1, 2, y, n},
we construct consecutive coarse-grained time series:

xðtÞðjÞ ¼
1

t
Xjt

i ¼ ðj�1Þtþ1

uðiÞ, 1r jrn=t, ð1Þ

2. Then we define m-dimensional sequence vectors: XðtÞm ðiÞ ¼

½xðtÞm ðiÞ,x
ðtÞ
m ðiþ1Þ,:::,xðtÞm ðiþm�1Þ�

3. The distance between two vectors is defined as

d½XðtÞm ðiÞ,X
ðtÞ
m ðjÞ� ¼maxf9xðtÞm ðiþkÞ�xðtÞm ðjþkÞ9 : 0rkrm�1g ð2Þ

For each 1r irn�m, let Bm
i ðr,nÞ be the relative frequency to

find a vector XðtÞm ðjÞ whose distance to XðtÞm ðiÞ is in a tolerance
level r and ja i.

4. The average of Bm
i ðr,nÞ can be calculated:

Bmðr,nÞ ¼ ðn�mÞ�1
Xn�m

i ¼ 1
Bm

i ðr,nÞ ð3Þ

5. Then we increase over one step from m to mþ1 and repeat the
steps 2–4 to get Bmþ1(r, n).

6. Consequently sample entropy can be calculated

SampEnðm,r,nÞ ¼ lim
n-1
f�ln½Bmþ1ðr,nÞ=Bmðr,nÞ�g ð4Þ

7. We then calculate the sample entropy measure for each coarse-
grained time series plotted as a function of the scale factor t and
call this procedure multi-scale entropy. In our analysis we use
m¼2 and r¼0.1–0.25s where s is the standard deviation of the
original time series. For a discussion on optimal choices for m

and r, see the literature (Lake et al., 2002).

2.2. Multi-scale cross entropy algorithm

The algorithm of multi-scale cross entropy is shown as follows:

1. Given two one-dimensional discrete time series with equal
length: {u(i): i¼1, 2, y, n} and {v(i): i¼1, 2, y, n}, we
normalize both discrete time series:

unormðiÞ ¼ f½uðiÞ�meanðuÞ�g=½stdðuÞ� ð5Þ

vnormðiÞ ¼ f½vðiÞ�meanðvÞ�g=½stdðvÞ� ð6Þ

2. We construct consecutive coarse-grained time series:

xðtÞðjÞ ¼ t�1
Xjt

i ¼ ðj�1Þtþ1

unormðiÞ ð7Þ

yðtÞðjÞ ¼ t�1
Xjt

i ¼ ðj�1Þtþ1

vnormðiÞ ð8Þ

where 1r jrt.
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