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a b s t r a c t

A recent scheme for calculating approximate vibrational mode lifetimes in solids (Dickel and Daw, 2010)
is extended to the next level (fourth-moment). The extension is tested in two cases: (1) simple, low-
dimensional anharmonic systems, and (2) on a simple lattice model of vibrations. We show that, for sys-
tems where the mode-resolved density of states is well-approximated by a single broadened peak, the
fourth-moment approximation works well over a wide range of temperatures.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dickel and Daw [1,2] recently proposed an approximate method
to calculate lifetimes of vibrational modes in non-linear solids
which involves ensemble averages of appropriate functions in
phase space that can be carried out by conventional Monte Carlo
in combination with a means of calculating forces, such as inter-
atomic potentials or first-principles electronic structure codes.
The approach was illustrated on a lattice model of non-linear inter-
actions, where the dependence of the mode lifetimes on cell size
and temperature was investigated numerically. In particular, cal-
culations based on averages of the second power of the Liouvillian
(that is, so-called ‘‘second-moment’’ approximation) accounted for
the mode lifetimes very well at high temperatures but diverged at
lower temperatures.

While the aim of the original work was to lay out the formalism
and carry out first-level (that is, second-moment) calculations, the
purpose of the present work is to examine in more depth the
approximations involved and to investigate the improvement
gained by including fourth moment. To this end we take up the
same idea as applied to very simple systems of just one or two
degrees of freedom. In considering systems of such simplicity, we

analyze some aspects of the problem analytically as well as numer-
ically. These insights prove fruitful, especially by indicating how
the next level of approximation (that is, ‘‘fourth-moment’’) is able
to account for vibrational mode lifetimes even at much lower tem-
peratures. We then return to the normal modes of lattice model,
and find that the fourth moment results are reliable to much lower
temperatures than the second moment.

This paper is organized as follows. First, we recap briefly the
approximation proposed by Dickel and Daw (DD). Then we con-
sider the approximation as applied to some simple dynamical sys-
tems. Our analysis of the results focuses on the density of states, by
which we can understand when and why the approximations work
as they do. Then we re-examine the lattice model with the fourth-
moment calculations. Finally, we draw our conclusions.

2. Background and scope of the present work

We summarize here the proposed approximation of DD, who
began by examining the Auto-Correlation Function (ACF)3

vkðtÞ ¼
hAkð0ÞAkðtÞi
hA2

ki
ð1Þ
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3 DD used the auto-correlation of fluctuations in the mode occupancy,
dnk ¼ nk � �nk . We examine here the auto-correlation based on mode amplitude, Ak ,
which we find more convenient. In particular, for finite systems the ACF using mode
occupancy does not go to zero as t goes large; the ‘‘residual’’ value of the mode
occupancy must necessarily be dealt with in calculations. Switching to the displace-
ment ACF avoids that difficulty.
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where Ak is the amplitude in a normal mode indexed by k. The
angular brackets indicate phase-space averages over the canonical
ensemble at temperature T ðq ¼ expð�H=TÞÞ.

The auto-correlation can be studied in terms of the Liouvillian
[3,4], which governs the time evolution of functions f ðfxg; fpg; tÞ
in phase space according to

@f
@t
¼ �ibLf

where the (Hermitian) Liouvillian operator is

bL ¼ ifH; g ¼ i
X

l

@H
@xl

@

@pl
� @H
@pl

@

@xl

� �

The dynamics are expressed primarily in terms of the positions and
momenta of the atoms (fxl; plg) and the normal mode amplitudes
and conjugate momenta (fAk;Pkg) are related to the atomic coordi-
nates via the normal mode transformation Xkl: (Ak ¼

P
lXklxl and

Pk ¼
P

lXklpl). The equation of motion can be integrated formally,
so that

f ðx; p; tÞ ¼ e�itbL f ðx;p;0Þ

(where by x and p we mean here the set of atomic coordinates). We
can express the mode auto-correlation explicitly in terms of bL:

vkðtÞ ¼
hAke�itbL Aki
hA2

ki

The Taylor Series of vðtÞ

vkðtÞ ¼ 1� lk;2
t2

2!
þ lk;4

t4

4!
� lk;6

t6

6!
þ . . .

relates the derivatives of vkðtÞ at t ¼ 0 to the moments of the Liou-
villian acting on the mode-amplitude:

lk;n ¼
hAk
bLnAki
hA2

ki

Specifically, the two lowest moments are related to averages
involving forces:

lk;2 ¼ hP
2
ki=hA

2
ki ¼ �hFkAki=hA2

ki ð2Þ

(via the virial theorem) and

lk;4 ¼ hF
2
ki=hA

2
ki ð3Þ

where the Fk is the mode-resolved set of atomic forces
(Fk ¼

P
lXklfl).

The moments of the Liouvillian are also the moments of the
density of states (DOS) derived from vðtÞ. That is, taking the Fourier
transform of vðtÞ to get nðxÞ, the moments are also

lk;m ¼
Z þ1

�1
dx xm nkðxÞ

Auto-correlation functions corresponding to decaying modes
typically have strong oscillations dampened by some sort of dying
envelope (for examples, see Figs. 1 and 2). We propose here to use
the area under the square of the ACF as a measure of the lifetime4

sk ¼
Z þ1

�1
dt vkðtÞ

2 ð4Þ

This ‘‘lifetime’’ is not intended to correspond to any particular phys-
ical measurement that might be performed, but rather is suggested
as a simple generic measure of the rate of the decay of the correla-
tion. Such a measure also lends itself easily to analysis. Using Pars-
eval’s Theorem, the lifetime is also given as the area under the nðxÞ2

curve:

s ¼
Z 1

�1
dt vðtÞ2 ¼

Z 1

�1
dx nðxÞ2 ð5Þ

DD observed that the lifetime s can be expressed as a (generally
unknown) function of the moments

sk ¼ Fðlk;2;lk;4;lk;6; . . .Þ

which can be re-expressed (using dimensional analysis) as

sk=sk;2 ¼ Gðck;4; ck;6; . . .Þ

where sk;2 ¼ l�1=2
k;2 ; G is a generally unknown function, and the c’s

are dimensionless parameters

ck;n ¼
lk;n

ðlk;2Þ
n=2

that characterize the shape of the DOS for each mode. (Note that
cn P 1.) While it is not generally possible to know all of the
moments, DD proposed that in certain circumstances the lifetime
might be practically approximated from a knowledge of only the
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Fig. 1. The ACF at three temperatures for the x4 model.
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Fig. 2. The ACF of the x-mode at k ¼ 0:5 and T ¼ 0:2 for the ‘‘cubic’’ model.

4 DD, basing their auto-correlation on the mode occupancy – which is usually non-
negative – evaluated the mode lifetime as the area under that ACF. In the present case,
because we are now using the displacement ACF, which oscillates strongly about zero,
we find it more convenient to evaluate the mode lifetime in terms of the area under
the square of the ACF.
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