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a b s t r a c t

The influence of particle arrangements and interface strengths on the mechanical behavior of the particle
reinforced metal–matrix composite (MMC) is investigated under different loading conditions in this
work. During the loading process, three different failure mechanisms are distinguished in MMC: ductile
failure in metal matrix, brittle failure in SiC particles and interface debonding between matrix and par-
ticles. The damage models based on the stress triaxial indicator and maximum principal stress criterion
are developed to simulate the failure process of metal matrix and SiC particles. Meanwhile, 2D cohesive
element is utilized to describe the debonding behavior of interface. Series of numerical experiments are
performed to study the macroscopic stress–strain relationships and microscale damage evolution in
MMCs under different loading conditions. An agreement between the simulation results and the exper-
imental data is obtained.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Metal matrix composites (MMCs) are widely used, but not lim-
ited, in the fields of aerocraft [1], automotive [2], electronic packing
[3–5], thermal management equipment [6,7], aviation [8,9] and so
on, due to a favorable combination of low density and improved
mechanical properties. The increasing applications of the MMCs
in the different fields require an efficient method to predict their
mechanical behaviors from the known properties of the constitu-
ents. Furthermore, one can design and optimize the microstructure
of MMCs according to the requirement based on the knowledge of
the correlation between microstructure, deformation, damage ini-
tiation and damage development in MMCs.

Computational micromechanics [10,11] is widely applied to
study the influence of the microstructure and phase properties of
MMCs on the macroscale mechanical properties of MMCs. Ganesh
and Chawla [12] and Peng et al. [13] studied the influence of par-
ticle shape on the mechanical behavior of MMCs. Schmauder
et al. [14] studied the influence of thermal residual stress on the
stress-strain relationships. Song and Huang [15] studied influences
of the SiC particles, constituents and precipitates on the fracture
toughness of SiCp/Al alloy metal matrix composites. Yan et al.

[16] and Ekici et al. [17] studied the effect of particle size on the
deformation behavior of the MMCs. Qing [18] studied the influence
of applied method of boundary condition on the prediction accu-
racy of mechanical properties of MMCs. Mishnaevsky et al.
[19,20] studied the effect of the spatial distribution of particles
on the mechanical properties of MMCs. Meanwhile, a number of
computational micromechanical models are developed to predict
the influence of interface on the macroscopic strength of MMCs,
such as Tursun et al. [21], Zhang et al. [22], Alberto [23], Mahmoodi
et al. [24] and Aghdam et al. [25] and Veazie and Qu [26], Sozh-
amannan et al. [27], and Wang et al. [28].

However, most studies in the literature including the studies
mentioned above are based on the uniaxial tensile loading condi-
tion through the symmetric boundary condition. In this work, we
study the influence of the interface strengths and microstructures
on the mechanical properties of MMCs under both uniaxial and
biaxial tensile loadings through the periodic boundary conditions
which are realized with a multi-point constraint subroutine MPC
in Abaqus. A program is developed for automatic generation of
2D micromechanical finite element models with random distribu-
tion of particle dimensions and locations. In order to simulate the
brittle cracking in particles and ductile failure in matrix, an elastic-
damage model based on the maxminum principal stress criterion
and a plastic-damage model based on the stress triaxial indicator
are developed in Abaqus subroutine USDFLD, respectively. Series
of numerical studies are performed to analyze the influence of
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particle arrangements, interface strengths and loading conditions
on the macroscopic stress-strain relationships and damage evolu-
tion in MMCs.

2. Finite element model

2.1. The generation of representative volume element (RVE)

In order to study the influence of the microstructures of MMC
on its deformation and damage evolution process, the microstruc-
ture of MMC under consideration should be able to vary according
to the requirement. Both the random disturbance of the initial reg-
ular arrangements [29–31] and the random sequential adsorption
algorithm [18,20,32–34] are widely applied to generate the micro-
structure of composites. Here, the microstructure with the random
particle arrangements is generated through the random sequential
adsorption algorithm. In the other words, the particle locations and
dimensions are controlled by the random number sequences. We
assume that the RVE of the MMC is a square with dimension L0,
and the particle number and volume fraction are np and vp, respec-
tively. Therefore, we can express the uniform particle radius r0 as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vpL2

0=pnp

q
ð1Þ

The distribution of particle dimension is defined by a sequen-
tially random number stream Rand1 controlled by the random
number generator seed s1 [32] as following

ri ¼ r0ðRand1i þ 1=2Þ ði ¼ 1;2; :::;npÞ ð2Þ

where Rand1 means the 1st random number stream, while Rand1i is
the i-th number of the random number stream Rand1. In order to
get the same particle volume fraction, the radius of each particle
has to be normalized with a factor f which relates other parameters
as

npðr0f Þ2 ¼
Xnp

i¼1

r2
i ð3Þ

Both x and y coordinates of particle centers are produced inde-
pendently and sequentially with two random number streams
(Rand2 and Rand3) controlled by two random number generator
seeds (s2 and s3). The distances between the new particle and all
existed particles are no less than a given distance related to the
particle radius. Furthermore, the new particle should not be too
close to the four borders. In order to ensure the periodicity of the
RVE, if a particle is cut by the border of the RVE, the remained part
is moved L0 pointing to the opposite boundary.

A program within Matlab, which can generate automatically the
2D micromechanical finite element models, is developed to realize
the above algorithm. Fig. 1 shows a RVE example generated
through the program with 100 particles for the particle volume
fractions equal to 15%. The different colors of particles indicate
the different mechanical properties, such as strengths in this study.

2.2. The mechanical properties of the constituents

The degradation behavior of a MMC due to damage initiation
and evolution is apparently the main failure mechanism during
the loading process. Three different failure mechanisms can be dis-
tinguished within MMC: ductile failure of matrix, brittle cracking
of reinforcement and interface debonding between particles and
matrix.

The SiC particle is assumed to be an isotropic elastic-brittle
damageable solid, and its Young modulus and Poisson’s ratio are
410 GPa and 0.14, respectively. The strengths of the particles obey
Weibull distribution with mean value ra = 550 MPa [18] and shape

parameter m = 9.62 [35]. A elastic-damage model is developed
within Abaqus through the subroutine USDFLD. Damage in the ele-
ment is assumed to initiate when its maximum principle stress
reaches the strength of the corresponding particle. A scalar damage
variable, Dp, initially has a value of 0. Damage in particles mono-
tonically evolves exponentially from 0 to 1 upon further loading
after the initiation of damage.

The stress–strain relationship of the aluminum alloy can be ex-
pressed as the Ramberg–Osgood model [36]

e ¼ r
Em
þ a

rm

Em

r
rm

� �n

ð4Þ

where Young modulus Em ¼ 69 GPa, and two other parameters
a ¼ 1, rm ¼ 275 MPa, with the Poisson’s ratio tm = 0.345 and the
strength rs ¼ 315 MPa.

Aluminum alloy behaves as typical ductile failure under tensile
loadings. In this study, a triaxiality factor D [37] is utilized to de-
scribe the incremental damage indicator. The triaxiality factor D
is defined as an increment of the plastic strain divided by the ref-
erence failure strain

D ¼
Z ep

0
erH=rV dep ð5Þ

where rH is the hydrostatic stress and rV is the Von Mises stress,
and ep is the cumulative plastic strain. The study [18] shows
Dc = 0.05 for aluminum alloy. The damage evolution in matrix, like
particle, monotonically evolves exponentially from 0 to 1 upon fur-
ther loading after the initiation of damage.

The interface debonding is one of the most important failure
mechanisms in MMCs. 2D cohesive element in term of traction–
separation law, which relates the displacement jump across the
interface with the traction vector acting upon it, is applied to sim-
ulate the fracture of the elements inserted at the particles/matrix
interface. The interface elements initially provide a linear, stiff re-
sponse which ensures the displacement continuity and avoids any
modification of the stress and strain fields around the interface.
The initial stiffness Ki of the cohesive elements is set to be a large
number, and here Ki = 108 GPa is adopted.

The onset of damage is dictated by a maximum stress criterion,
and the initial damage strength of the cohesive element is assumed
as

Sint ¼ kcohðrm þ raÞ=2 ð6Þ

Fig. 1. Example of FE-mesh of microstructural model.
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