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In this study, a dimension reduction procedure of defect properties is proposed together with a two
dimensional dislocation dynamics framework in order to simulate tensile response of the materials at
different levels of external conditions such as radiation. This procedure delivers ordered pairs of strength
and line density according to the changes in the geometrical properties of the defects. Plain strain
deformation of irradiated oxygen-free high conductivity copper is investigated by using experimental
information about the evolution of stacking-fault tetrahedra at the irradiation doses of 0-0.2 dpa.
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1. Introduction

Exposure to intense radiation fields, high temperatures, and
high pressures for long periods of time are characteristics of many
materials in nuclear reactors. Since their satisfactory performance
is vital, modeling and simulations of nuclear materials constitute
a major part in development and design.

Face-centered cubic (FCC) materials are also in the service of
nuclear industry for their beneficial properties such as high ther-
mal and electrical conductivity. The micromechanical properties
of FCC materials have been investigated by many experiments
[1-6]. Below the limit of 0.3T,,, where T,, is the melting tempera-
ture, major irradiation-induced defects in FCC materials are stack-
ing-fault tetrahedra (SFT), dislocation loops, and vacancies [3,5].
Beyond 0.3T,,, aggregation of vacancies results in the formation
of voids. Including the presence of the precipitates [7-9] in the
alloys, these defects behave as an obstacle for dislocations and
change the yield strength [4-8]. Plastic deformation due to irradi-
ation-induced defects is the basic aspect to model failure of the
nuclear materials.

In the present study, a dimension reduction procedure that will
fit on 2D dislocation dynamics (DD) [10] is proposed in order to
represent multi-type defects. In Section 2, a brief description of
2D DD framework is present. Section 3 describes the determination
of average 2D profile by using Delesse Principle and its adaptation
to the formulations of defect strength. Section 4 introduces the
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notion of line density and spacing based on Rosiwal Principle.
Finally, in Section 5, tensile response of oxygen-free high conduc-
tivity (OFHC) copper under the condition of plain-strain deforma-
tion, is presented by using experimental defect data [6] for the
irradiation levels of 0-0.2 dpa.

2. 2D DD model

A 2D DD [10] framework, which is illustrated in Fig. 1 is
proposed to perform simulations for the constitutive behavior of
irradiated materials. This model is based on plain strain deforma-
tion with small strain approximation where three slip systems
with only edge dislocations (L) exist. Dislocations are generated
in the form of dipole via Frank-Read (FR) sources (), and edge
dislocations are allowed to move, annihilate, pin and release at
obstacles (e) on slip lines which are the side view of slip planes.
Each slip line is impenetrable in order to give the effect of grain
boundaries. Although 2D DD is a simplified model in terms of dis-
location motion, reduction of slip planes to slip lines complicates
the representation of heterogeneous materials. Together with the
absence of classification based on defects, this problem concludes
the arbitrary selection of fundamental terms such as density and
strength of the defects [10-14]. In order to realize a more accurate
description, 3D geometrical properties of defects may be translated
to the basis of 1D information, since edge dislocations move on slip
lines. A dimension reduction procedure for representation of
defects in 2D DD requires two main phases. In the first phase,
adaptation of defect strength formulations to 2D DD computational
cell is accomplished by the illustration of an average 2D
profile assuming that 2D average spacing is preserved inside the
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Fig. 1. DD unit cell model (left) for the tensile response. A grain has three slip systems (right) on which dislocations (L) can be generated from sources (0), can glide and be

halted by obstacles (e).

geometrical cell. In the latter phase, determination of intersections
between slip lines and defects finalizes the procedure with the
acquisition of necessary information to represent defects on the
path of dislocations.

3. Strength of defects

Defects may block moving dislocations if their resistance is
greater than the absolute value of resolved shear stress of interact-
ing dislocation. Theories developed for defect strength in
mesoscale simulations are based on the estimates of line tension
in a generic dislocation as it propagates through a dispersion of
2D objects over its glide plane. As a consequence, strength of obsta-
cles is a function of 2D spacing between defects. In this section,
current formulations of barrier strength are modified according
to 2D profile which is obtained by a slicing process.

First type of defects, on which slicing is applied, are the precip-
itates which are elementary defects in any alloy. Although precip-
itates exist in various shapes, they can be considered as spherical
objects in a first approximation. The basic information that may
be provided by using experimental or computational techniques
is the density of these precipitates which is defined as:

sp _ Number of objects
Volume

(1)

Since Eq. (1) doesn’t give sufficient detail about the geometrical
properties such as total volume, an additional expression is
required to achieve further steps. Herein, fraction is the ideal
expression that supplies the missing information in Eq. (1). N such
precipitates of an average radius R inside a representative cubic
volume of edge size W correspond to a volume fraction given by:

4. (R\’

§N7t (W) (2)
After the determination of necessary terms in 3D, next step is to
precise the effects made by slicing on 2D. It is trivial that discs will
be generated by slicing a sphere as illustrated in Fig. 2 (left). If m
discs are present on a square area of edge size W, then introduction
of a fraction between the total area of m discs and square cross-
section yields:

2
R2D
PZD =Mmm (W)

The average radius of the discs is different from the radius of the
spheres due the slicing process. The relation between R and R*" is
determined by averaging over the sphere:
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When one performs infinitely many slices, both areal fraction on the
cross-section and volumetric fraction are expected to be equal. This
conservation is called Delesse Principle [15-19] and states that:

Pyp =P3p (5)

Equivalence of fractions is a constraint which gives a chance to
determine the number of objects in 2D. Practically, it is possible
to express m in terms of 3D quantities using Eqgs. (2), (3), and (5):
1 R
m=_-Nm?— 6
Since the average number of discs that should be present on 2D
cross-section is identified, 2D density gets the following form with
3D geometrical inputs:
2
= ?pggheresR (7)
Eq. (7) may be considered as the final step of transition from 3D to
2D because, not only density is calculated but also the average dis-
tance between the discs is characterized. Thus, the average spacing
between discs is approximated via:

1
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Eventually, the completion of calculations enables to describe an
average 2D profile in Fig. 3 (left). One should also note that 2D spac-
ing calculated via Eq. (8) is conserved inside the picture.
Determination of 2D geometrical quantities permits to calculate
the strength of precipitates. Many formulations developed for pre-
cipitate hardening overestimate the strength values in comparison
to DD simulations. Hence, it has been shown [20] that the Orowan
strengthening due to the presence of precipitate is consistently
modeled by the Bacon, Kocks, and Scattergood (BKS) approxima-

tion [21]:
{ln <2> +B
To

where relative diameter due to Orowan loop, D, is given by:

2D
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If parameters of BKS formula are investigated, A is a coefficient
depending on the character of the dislocation, A =1/2n(1 —v) for
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