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a b s t r a c t

The Poisson equation is used to calculate the drift velocity in the two-dimensional diffusion couple. This
approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts
that the volume velocity is essential in defining the local material velocity in multicomponent mixture at
non-equilibrium. As an example the arbitrary binary system is considered. It is shown that (1) the two
dimensional calculations should be applied with the stochastization method and (2) the drift term in
mass conservation law does not affect the calculations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modelling of interdiffusion phenomena is far from being uni-
fied. The specificity of different approaches lies in the arbitrary
choice of the drift (convection) velocity. In computational solid
mechanic it is defined as being equal to the mass average velocity
[1]. Such a method allows for simplified formulation of an interdif-
fusion strain rate tensor and allows the Lagrangian approach for
modeling interdiffusion phenomena in solid metals. In gases and
fluids the drift is defined basing on the volume average velocity
[2,3]. In material science the drift definition base on the Darken
method [4]. This method is not widely accepted in physics and
consequently it is common to postulate drift as an average mass
velocity [1] or neglect drift (convection) entirely and assume sim-
ple Fick’ian diffusion only [4]. Such simplified approach to the mass
transport was used in three-dimensional model of interdiffused
quantum dots where an automatic solution to the Fick’s diffusion
equation was implemented. Obviously it does not allow consider-
ing the interdiffusion effects [4].

The entirely new concept concerning the mass transfer started
with Darken method. His basic assumption was the postulate of
drift velocity in binary solid solution [5]. The drift velocity, in fact
is the vacancy velocity generated during interdiffusion process
caused by difference in the intrinsic diffusion coefficients. Darken
determine the drift velocity from mass conservation laws of A
and B component as:

tdrift ¼ ðDA � DBÞ
@NA

@x
:

Thus, the overall velocity in binary mixture was divided in two
parts (1) the diffusion velocity, td

i determined by Nernst–Planck
flux equation and (2) drift velocity tdrift.

The drift velocity concept nowadays is still generalized. It
allows to estimate: (1) the interdiffusion process in multicompo-
nent and multiphase systems [6], (2) the Kirkendall phenomena
(the position of the kirkendall planes) [7], (3) the interactions
between the self stress and interdiffusion [8–10], (4) the influence
of the external pressure field and entropy during diffusion process
[11], (5) a mathematical model was developed to simulate the
morphological change of the sintering neck by its growth and the
Kirkendall void formation in the Cu–Ni alloy [12] and many others.

In 2012 we have shown how to calculate the entropy and
entropy production during diffusion process [13,11]. This concept
was further used to calculate the interdiffusion process in multi-
phase binary and ternary couples. The use of the entropy produc-
tion rate in multiphase calculations is an additional factor which
allow to calculate the evolution of the phases in multicomponent
systems was recently demonstrated [14].

The practical applicability causes that in spite of mathematical
and numerical difficulties the three dimensional interdiffusion
problems are still of interest. Recently Gusak et al. suggested 3D
generalization of Martin–Erdelyi–Beke model of simultaneous
interdiffusion and ordering in binary diffusion couples [15]. The
objective of this work is to analyze the diffusion is solid solutions
(binary alloy) and show the differences between the one- and
two-dimensional interdiffusion calculations. The presented
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approach base on the bi-velocity method where the volume
velocity is essential in defining the local material velocity at non-
equilibrium [8,16]. The model is formulated for an arbitrary,
three-dimensional system. Discussion here is limited to the
two-dimensional binary solution.

2. The two-dimensional bi-velocity method

In this paragraph the two dimensional generalized Darken
method will be formulated. The main law is the mass conservation
law for each reacting component in the diffusion couple in the
sub-set of the volume occupied by the mixture |X| � X:Z
jXj

@ci

@t
þ divJi

� �
dx ¼ 0 i ¼ 1;2; . . . ; r: ð1Þ

Above equation was derived from the Liouville theorem. The
flux, Ji is defined after Darken as a sum of the diffusion ji and drift
fluxes, jdrift. The ci denote the concentration of the ith element in
the mixture. All of the above variables are a functions of the
position in three dimensional space and time.

The diffusion flux can be defined from Nernst–Planck flux
equation [17,18]:

ji ¼ �
Di

kT
grad li; ð2Þ

where the Di and li denote the diffusion coefficient and diffusion
potential of the ith component, respectively. In this work for simpli-
fication we will apply the ideality sweeping statement (i.e. ai = ci).
Thus the diffusion flux can be rewritten as follow:

ji ¼ �Di grad ci; ð3Þ

After Darken the drift velocity will be calculated from the mass
conservation laws of each component. The sum of Eq. (1) give the
following expression:Z
jXj

Xr

i¼1

@ci

@t
þ div

Xr

i¼1

Ji

" #
dx ¼ 0 ð4Þ

assuming that the overall concentration, c is constant and that the
overall flux is a sum of the diffusion and drift fluxes, Ji ¼ ji þ jdrift

the following relation holds:Z
jXj

div
Xr

i¼1

ji þ jdrift
i

� �
dx ¼

Z
jXj

div
Xr

i¼1

ji þ citdrift
� �

dx ¼ 0 ð5Þ

The above set of the equations allows to calculate the interdif-
fusion process in two dimensional domain.

3. Solution

To solve above model two independent solvers should be
applied. Mainly, e.g. the lines method [19] to solve the problem
in space and Runge–Kutta–Fehlberg method to solve the ordinary
differential equations in time. First, the uniform grid, contained
M and N mesh points along the x and y direction respectively,
was generated and the concentrations and drift velocity were
defined at points xk,l. The equations was discretize in space to
obtain the ordinary differential equation. The discretized overall
flux of the ith component can be written as follow:

JiðtÞ :¼ jiðxk;l; yk;l; tÞ þ jdriftðxk;l; yk;l; tÞ

�
�k;lDi

kþ1;lci�k�1;lci
xkþ1;l�xk�1;l

þ k;lci

kþ1;ludrift
i
�k�1;ludrift

i
xkþ1;l�xk�1;l

;

�k;lDi
k;lþ1ci�k;l�1ci
yk;lþ1�yk;l�1

þ k;lci

k;lþ1udrift
i
�k;l�1udrift

i
yk;lþ1�yk;l�1

2
64

3
75; i ¼ 1;2; . . . ; r

ð6Þ
the udrift

i denote the drift potential. To estimate the drift velocity the
Poisson equation must be solved:

divðtdriftÞ ¼ divðgrad udrift þ rot udriftÞ ¼ �
Xr

i¼1

divðXicitd
i Þ

¼ f ðx; tÞ ð7Þ

where udrift denote the unknown drift potential.
In order to solve the problem numerically we need to replace

the second order partial derivatives with second-order finite differ-
ence approximations:

udrift
k�1;l � 2udrift

k;l þ udrift
kþ1;l

Dx2 þ
udrift

k;l�1 � 2udrift
k;l þ udrift

k;lþ1

Dy2 ¼ fk;l;

k ¼ 2; . . . ;M; l ¼ 2; . . . ;N ð8Þ

where M and N denote number of nodes in x and y directions,
respectively.

The unknowns are located strictly in the interior of grid since
udrift is known at the boundaries from the boundary conditions,
and hence there are (M � 1)(N � 1) unknowns. The iterative update
of the Jacobi iteration can now be written as:

ðnþ1Þudrift
k;l ¼

ðnÞudrift
k�1;lþðnÞu

drift
kþ1;l

� �
Dy2þ ðnÞudrift

k;l�1þðnÞu
drift
k;lþ1

� �
Dx2�Dx2Dy2fk;l

2ðDx2þDy2Þ ;

ð9Þ

Moreover, to calculate the drift velocity the Poisson equation
must be solved:

divðtdriftÞ ¼ divðgrad udrift þ rot udriftÞ ¼ �
Xr

i¼1

divðXicitd
i Þ

¼ f ðx; tÞ ð10Þ

where udrift denote the unknown drift potential.
In order to solve the problem numerically we need to replace

the second order partial derivatives with second-order finite
difference approximations:

udrift
k�1;l � 2udrift

k;l þ udrift
kþ1;l

Dx2 þ
udrift

k;l�1 � 2udrift
k;l þ udrift

k;lþ1

Dy2 ¼ fk;l;

k ¼ 2; . . . ;M; l ¼ 2; . . . ;N ð11Þ

where M and N denote number of nodes in x and y directions,
respectively.

The unknowns are located strictly in the interior of grid since
udrift is known at the boundaries from the boundary conditions,
and hence there are (M � 1)(N � 1) unknowns. The iterative update
of the Jacobi iteration can now be written as:

Fig. 1. The flow-chart depicting the various steps involved in the calculations.
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