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a b s t r a c t

This paper addresses the use of the Lattice Monte Carlo method for the thermal characterization of
composite materials. An optimized approach that minimizes computational time is presented. The
key aspect of the approach is the avoidance of the need to model the local thermal inertia. A combined
finite element and Lattice Monte Carlo analysis is conducted on a model composite for a formal
verification of the effective thermal diffusivity and conductivity calculated by the optimized Lattice
Monte Carlo method. The effective thermal inertia is calculated separately by making use of the energy
conservation law.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since its appearance more than 70 years ago, the Monte Carlo
method has undergone numerous developments and has enjoyed
applications in virtually every area of science and engineering.
The Monte Carlo method has been a popular method for addressing
both mass and heat transport problems in materials. For mass
transport, the Monte Carlo method has been used for many years
for addressing atomistic problems in crystalline solids (in such
problems it is now usually called the Kinetic Monte Carlo (KMC)
method; see [1] for an early review and [2] for a typical recent
KMC calculation). More recently, a lattice-based random walk
Monte Carlo method has been used for addressing phenomenolog-
ical problems (where it has been termed the Lattice Monte Carlo
(LMC) method [3,4] to differentiate it from the KMC method). In
addressing heat transport problems, the LMC method has been
used for investigating transient heat conduction problems in
homogeneous materials (where a continuous random walk
method has also been used [5]). The LMC analysis has proved to
be a very versatile and robust numerical method that can be used
to conduct transient thermal simulations as well as to determine
effective thermal properties (usually via equilibrium thermal sim-
ulations). Recently, the LMC method has been adapted to address
these problems in inhomogeneous materials [6,7].

2. Introductory remarks about the methods used

We consider a composite material consisting of n different
phases with Ui, ki, ci, qi, as the volume fraction, thermal conductiv-
ity, specific heat and density, respectively, of an individual phase i.
The thermal inertia Ii of a phase i is the product Ii = ci qi. The
thermal inertia of the whole composite Ieff then is calculated sim-
ply as (see the Appendix for a derivation based on mass balance):

Ieff ¼
Xn

i¼1

IiUi ð1Þ

The thermal diffusivity of each phase i is given by:

Di ¼
ki

ciqi
ð2Þ

and the effective diffusivity Deff of the composite is given by:

Deff ¼
keff

Ieff
ð3Þ

To calculate an effective thermal conductivity keff and diffusivity Deff

for a composite the following methods can be used. First, a steady-
state FEA method can be employed. In this, an appropriate steady-
state temperature distribution is generated and Fourier’s law is uti-
lized in order to obtain the effective thermal conductivity. In this
type of numerical simulation there is no need for modeling the iner-
tias of the phases in the composite. Making use of Fourier’s law, the
effective thermal conductivity keff of the composite can be obtained
according to:
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keff ¼
dQ
dt
� Dx
DT � A ¼

dQ
dt
� 1
DT � Dx

; ð4Þ

where dQ/dt is the resulting constant heat flux, Dx is the side length
of the unit cell and A = Dx2 is the control surface. As stated above,
the effective thermal diffusivity of the composite can then be deter-
mined using Eq. (3).

A transient FEA method is possible and consists of the calcula-
tion of the time-dependent temperature profile for the geometry
where an exact analytical solution is available [8]. Then, fitting
the exact solution to the profile, in principle, should give the effec-
tive thermal diffusivity. Obviously, implementation of this method
requires modeling of the thermal inertia of each phase.

Another possible method is an analytical approach. Depending
on the geometry of the phases in the composite there are several
suitable analytical formulae to determine the effective thermal
conductivity. Though approximate, they usually provide useful
insight into the structure of the effective thermal properties. We
consider here the Maxwell [9] relation for the effective thermal
conductivity. This relation gives the best results when applied to
a composite with one matrix phase and the remaining n-1 phases
are distributed as inclusions. The inclusions should be well sepa-
rated from each other. Derivation of this type of relation was made
in [10] and the effective thermal conductivity then is given as:

keff ;Maxwell ¼ k1 1þ 2
Xn

j¼2

Uj
kj � k1

kj þ 2k1

 !
1�

Xn

j¼2

Uj
kj � k1

kj þ 2k1

 !�1

: ð5Þ

To transform this relation into the relation for the thermal diffusiv-
ity, we use Eq. (3), which was first derived in [11,12]:

Deff ;Maxwell ¼
keff ;Maxwell

Ieff

¼ k1 1þ 2
Xn

j¼2

Uj
kj � k1

kj þ 2k1

 !
Ieff 1�

Xn

j¼2

Uj
kj � k1

kj þ 2k1

 ! !�1

:

ð6Þ

Both steady-state FEA and analytical approaches clearly and cor-
rectly show that the effective thermal conductivity does not depend
on the thermal inertias of the individual phases. This fact can be
taken advantage of when the equilibrium LMC method is employed
for the calculation of the effective thermal conductivities and
diffusivities. This is precisely the reason for the introduction of an
optimized LMC method which has been given previously only in
the form of a recipe [8]. Here, in order to validate this approach,
steady-state and transient FEA methods in parallel with the full
and optimized LMCs are performed for a series of test simulations
for a model composite structure. In addition, an analytical
(approximate) Maxwell relation is used for calculation of the effec-
tive thermal properties.

As mentioned above, the effective thermal conductivity can be
calculated using analytical, finite element or Lattice Monte Carlo
methods. Analytical methods allow for fast calculations; however,
they are mostly limited to simple geometries and merely provide
estimates for more complex structures. Finite element analysis is
a powerful method for thermal conductivity calculations. Limita-
tions are a possible mesh dependence of the solution and the
restriction to only determination of a single direction conductivity
per simulation. The generation of the calculation model (i.e. the
finite element mesh) requires expertise for ensuring numerical
convergence and accurate geometric representation. On the other
hand, Lattice Monte Carlo analysis computes the complete thermal
conductivity/diffusivity tensor in a single simulation. Furthermore,
a simple voxel calculation model can be used when data are drawn
from a micro-computed tomography image. On the downside, a
single LMC calculation requires coding by the user and typically

more computation time than a corresponding finite element simu-
lation. However, this is balanced by the computation of the com-
plete conductivity tensor and reduced modeling time.

2.1. Lattice Monte Carlo algorithm

In the implementation of LMC, the simulation traces the dis-
placements of the probing (energy) particles within a system at
thermal equilibrium (i.e. a uniform temperature). To distinguish
it from the transient LMC simulation that calculates time-
dependent temperature profiles [13] it can also be called an
equilibrium LMC. It should be mentioned here that there is no
experimental analogue to this approach. However, in the very
closely related field of mass diffusion the vector displacements R
in time t of single atoms can be traced to calculate their mass
diffusivity according to the Einstein equation [14,15] in d
dimensions (d = 1, 2, 3):

D ¼ hR
2i

2dt
; ð7Þ

where the Dirac brackets h i indicate an average over a large number
of atoms. In a LMC simulation of thermal transport, energy particles
are injected into the geometric model (the lattice) and permitted to
explore its structure via random walks. These lattice-based random
walks are directed by selection and jump probabilities that contain
the material model of the simulation.

In general, any LMC algorithm has three sequential stages: ini-
tialization, calculation and evaluation. First, let us consider initial-
ization for the full LMC. In this stage, the geometry and thermal
properties of the constituent phases, thermal conductivity ki and
thermal inertia Ii are all defined. The geometry is represented by
a lattice model that is assembled by nodes. Each node represents
a control volume and is located at its center. Corresponding to
the target geometry the material properties are assigned to each
volume/lattice node. The easiest lattice structure for the arrange-
ment of the nodes is a simple cubic one, but other lattices may
be selected if required. Next, energy particles are distributed
within the lattice (multiple occupancy of a node is possible). For
an equilibrium LMC simulation a constant temperature is required
throughout the composite. To this end, each equal-sized control
volume V is represented by its lattice node and is populated with
energy particles. The amount of energy Ei required per lattice node
for a constant temperature T throughout a composite can be calcu-
lated according to:

Ei ¼ T � V � qi � Ci ¼ T � V � Ii: ð8Þ

Therefore, Eq. (8) dictates that energy particles are not evenly dis-
tributed but must be segregated according to the thermal inertia
Ii of each phase. The constant energy content of a particle is the
system energy

P
Ei divided by the total number of particles. The

number of particles can be chosen freely; a higher number of parti-
cles improves numerical accuracy (according to the Central Limit
Theorem and with the relative error being inversely proportional
to the square root of the number of particles) but simultaneously
of course increases the simulation time.

In LMC simulations the energy particles are permitted to
explore the structure on random walks. Walks are random insofar
as the jump direction is chosen randomly. For example, in a three-
dimensional simple cubic model, a total of six jump directions (i.e.
positive and negative x, y and z directions) are possible. At the
beginning of each jump attempt, the LMC simulation time tLMC is
incremented by one time step. In the full LMC a successful jump
from a node to its nearest neighbor requires overcoming both
the selection and jump probabilities. The selection probability
implements the thermal inertia and maintains particle segregation
(i.e. a uniform temperature) in the LMC model. The selection
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