
Two-dimensional simulation of reactive diffusion in binary systems

J. Svoboda a, J. Stopka b, F.D. Fischer c,⇑
a Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic
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a b s t r a c t

Very recently the authors have shown (Svoboda and Fischer, 2013) that the concept of reactive diffusion
can successfully be applied to the simulation of one-dimensional diffusive phase transformations in bin-
ary systems. The concept is now generalized to two dimensions and used for simulations of diffusive
phase transformations in multi-phase binary systems. The kinetics of two systems with different starting
configurations and kinetic coefficients is simulated. The simulations show that the concept is robust and
the interfaces remain sharp. The comparison with the well-known Cahn–Hilliard phase field method
indicates that the present reactive diffusion concept represents a special case of the Cahn–Hilliard phase
field method with an infinite value of the interface mobility and zero interface energy. The reactive dif-
fusion concept is, thus, applicable to cases, where the changes of the volume fraction of individual phases
dominate their coarsening.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Understanding of the development of several (intermetallic)
phases formed in a binary system of elements A and B is mostly
based on one-dimensional configurations of a diffusion couple
with a crystal rich in element A of one phase in the left part and
a crystal rich in element B of another phase in the right part of
the specimen. An established concept is that by Dayananda and
Murch [1] and later van Loo [2], based on measuring the kinetics
of composition profiles, for further details see the recent paper
by Paul [3], Section 3 there, and the corresponding references.
The main task is the determination of a proper interdiffusion coef-
ficient, see [3]. For sake of completeness and giving some specific
applications we mention the following papers: [4] for a Si–Ta sys-
tem, [5] for a Si–Ti system, [6] for Fe–Nb, [7] and [8] for Ni–Al and
Ag–Zn, [9] for Ni–Al, [10], [11] and [12] for a Co–Si system and [13]
for Au–Sb system, [14] for Al–Mg and [15] as a review on several
systems. It should be mentioned that Paul extended the concept
also to quasi-ternary systems, see [3] and applications for a Ni–
Co–Pt and Ni–Co–Fe system [16]. An equivalent concept to that
of Dayananda/van Loo was presented even half a century ago by
Sauer and Freise [17] and confirmed by den Broeder [18], see the
very recent paper by Mehrer and Sprengel [19] with applications

to a Co–Nb, Ni–Nb, Al–Mo and Ni–Al systems and the paper by
Cui et al. [20] studying a Co–Al system.

With respect to multi-component multi-phase systems and
one-dimensional configurations we would like to mention two fur-
ther approaches:

The first one is the engagement of the DICTRA concept (http://
www.thermocalc.com/DICTRA.htm), see also [21], which is based
on standard linear non-equilibrium thermodynamics assuming
local equilibrium at interfaces. As second one we consider the suc-
cessful application of the Thermodynamic Extremal Principle (TEP),
see e.g. [22], for the understanding of the Kirkendall effect in multi-
phase systems. We mention here applications for binary systems
with multiple stoichiometric intermetallic phases, [23], the exten-
sion to multicomponent systems [24], a further extension with
modelling the role of sources and sinks for vacancies [25] and
the treatment of a system with combined grain boundary and bulk
diffusion in the recent paper [26] for Cu–Sn-system. It should be
emphasized that the concept based on TEP assumes strictly stoichi-
ometric phases which are separated by sharp phase interfaces. At
the interfaces the mass-conservation relation for a moving inter-
face in form of a jump condition, see e.g. [27] and Section 3.2 of
[28], must rigorously be fulfilled. The role of sources and sinks
for vacancies is manifested in the TEP concept by an additional
term a representing the vacancy generation rate density, spanning
the whole range from no sources and sinks (a � 0) to ideal sources
and sinks. We would like to mention that Danielewski, Wierzba
et al. have introduced a somewhat related concept by their
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bi-velocity model, see e.g. the very recent papers [29,30]. However,
an explicit involvement of the annihilation/generation of vacancies
seems to be the physically proper way.

From our point of view the most successful concept up to now
for a one-dimensional setting is the so-called ‘‘reactive diffusion
concept’’ (RDC), which is based on a modified form of a proposal
by Erdelyi and Schmitz [31], see the previous paper [28], according
to which we have received several successful simulations, see
again [28].

Let us repeat the advantages of the RDC as

(i) It works only with thermodynamic quantities (e.g. chemical
potentials, diffusion coefficients, diffusive fluxes etc.) with-
out the necessity to handle explicitly the individual phases.

(ii) It is very simple in treating since the RDC does not make it
necessary to engage a jump condition at interfaces between
phases, which means that the according algorithm automat-
ically finds the positions of the phase interfaces as steep con-
centration gradients.

However, the RDC has been formulated and applied up to now
only for a one-dimensional configuration. An open research task is
now to simulate reactive diffusion processes also in multi-dimen-
sional configurations.

One of the most promising concepts to handle a multi-dimen-
sional configuration is the Phase-Field Method (PFM), see e.g. the
overviews by Steinbach [32,33] for applications in materials sci-
ence and the paper by the co-workers of Steinmann [34] for its for-
mulation in the frame of the finite element method. However,
there are also some difficulties in relating the PFM quantities to
the thermodynamic ones, see e.g. Wu et al. [35]. A very detailed
explanation of the link between PFM and thermodynamics can
be taken from the recent paper [36]. Most of the PFM applications
are reported for two-dimensional configurations as the recent
paper by Cogswell and Carter [37] for ternary systems and four
phases, by Kim et al. [38] for binary systems and specific material
systems as Ag–Cu, by Böhme et al. [39] and by Wu et al. [35] for a
Ni–Al–Pt system. An interesting contribution by Heo et al. [40] can
also be mentioned, who incorporated nuclei for interfaces.

For sake of completeness it should be mentioned that also the
Monte Carlo method allows a multi-dimensional generalization,
see e.g. the recent contribution by Gusak and co-workers [41].

The research goal of this paper is now the multi-dimensional
generalization of the very effective RDC, as introduced in a recent
paper [28], mainly due to its fascinating simplicity.

2. Equations of reactive diffusion

We consider two components A and B, which may form several
intermetallic phases AyB1�y. Mainly to avoid any deformation state
due to the diffusion process we assume that no sources and sinks
for vacancies exist in the system and the molar volume X is inde-
pendent of chemical composition and phase. The site fractions of A
and B are denoted as y and 1 � y, resp. To both components the
chemical potentials lA and lB are addressed. Furthermore, the
components diffuse with the fluxes jA and jB through the lattices
of individual phases and interfaces. Two conservation equations
exist, namely for

mass : _y ¼ �X divðjAÞ ð1Þ

and

lattice positions : jA þ jB ¼ 0; ð2Þ

for details, see, e.g., [42], Section 2 there. A dot above a variable, e.g.
_y, denotes the total derivative with respect to time t. With grad (�)

and div (�) we denote the gradient and divergence operators applied
to a quantity (�) with respect to the actual system. The constitutive
equations for the fluxes can be formulated in a common way relat-
ing the fluxes with gradients of the chemical potentials. The accord-
ing derivation can be found in the Appendix and yields

jA ¼ �
yð1� yÞ

RTX
� DADB

ðyDA þ ð1� yÞDBÞ
� gradðlA � lBÞ: ð3Þ

The gas constant is denoted as R, the absolute temperature as T, and
DA and DB represent the tracer diffusion coefficients of components
A and B in respective phases. The second term on the r.h.s. of Eq. (3)
represents a so-called ‘‘interdiffusion’’ coefficient DNP, see the
Appendix with respect to its derivation and the superscript ‘‘NP’’,
yielding the diffusion equation in the form

RTX jA ¼ �yð1� yÞDNPgradðlA � lBÞ: ð4:1Þ

For ideal solutions of components A and B one finds the classical
Fick’s first law as

XjA ¼ �DNPgradðyÞ: ð4:2Þ

Combination of Eqs. (1) and (4.2) allows formulating the diffu-
sion equation as

_y ¼ divðDNPgradðyÞÞ: ð4:3Þ

The ‘‘interdiffusion’’ coefficient DNP, however, depends on y, see Eq.
(3), and, therefore, a nonlinear partial differential equation must be
dealt with. Only for (nearly) identical tracer diffusion coefficients
the problem formulation becomes linear in y.

We consider a quadratic region with a periodic boundary condi-
tion and a given distribution of the components A (site fraction y)
and B (site fraction 1 � y) in this region as initial condition. The real
demanding task, however, is to meet correctly the separation of the
total region into sub-regions with different chemical composition
and phases. As contact condition at the interface, represented by
complicated curves, the equality of chemical potentials must be
taken into account, see Eq. (7) below. A detailed description of
the substructure and its evolution is given in Section 3.

In the following context we assume as initial phase a solid solu-
tion (superscript SS) of components A and B, which allows formu-
lating the chemical potential in the frame of ideal solution as

Phase SS : lSS
A ¼ RT lnðyÞ; lSS

B ¼ RT lnð1� yÞ: ð5Þ

Moreover, we consider two intermetallic phases AyB1�y denoted as
IMP1 and IMP2. The molar Gibbs energy diagram for all phases SS,
IMP1 and IMP2 is depicted in Fig. 1 by using the parameters given
by Eq. (11), see later. The chemical potentials are defined according
to the concept presented in [28] for both intermetallic phases IMP1
and IMP2 as

Fig. 1. Molar Gibbs energy diagram for SS, IMP1 and IMP phases plotted for the
values of thermodynamic parameters given by Eq. (11). The solubility limits yeq1 to
yeq6 are given by the double-tangent construction.
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