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a b s t r a c t

The formation and evolution of dislocation boundaries during plastic deformation is one of the primary
basis for understanding material strength, shaping, texture, re-crystallization properties, and plastic
deformation itself. Better understanding of plastic deformation characteristics will provide for enormous
benefits in manipulation of manufacturing processes. Although several analytical and numerical studies
have been conducted on 2D analysis of simplified configurations of dislocation boundaries, more complex
dislocation boundaries have not received much attention. The present paper presents a 3D numerical
analysis of a geometrically necessary dislocation boundary using a multi-scale simulation technique:
the multi-scale discrete dislocation plasticity (MDDP). The characteristics and internal structure of the
dislocation boundary are extracted from experimental measurements. Effect of dislocation boundary
rotation angle on the generated self-stress field and behavior of multiple dislocation boundaries is
investigated.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Based on dislocation theory, plastic deformation is believed to
occur as a result of dislocation motion on certain crystallographic
slip planes. This motion causes dislocations to arrange themselves
into certain structures and patterns, which therefore, hold the
valuable information about the characteristics of the plastic defor-
mation history. These dislocation structures and patterns play an
important role in determining the overall response of the material
to plastic deformation, and therefore considerable effort (experi-
mental, analytical and numerical [1–19]) has been devoted to char-
acterize the different dislocation structures. One of the important
dislocation patterns frequently observed is the formation of dislo-
cation boundaries and cells. Dislocation boundaries are areas with
dense dislocation density and cells are areas nearly free of disloca-
tions. Saada [1] and Saada and Bouchaud [2] studied elastic fields
associated with dislocation networks, grain boundaries and dislo-
cation boundaries and presented analytical relations for the elastic
field of certain dislocation patterns. Rai et al. [3] performed TEM
studies on In-doped and undoped GaAs and presented dislocation
structures observed between 700 and 1100 �C. Lubarda et al. [4]
analyzed the equilibrium arrangement of collections of edge dislo-
cations under plane strain conditions. Nazarov and Romanov [5]

and Nazarov et al. [6] studied elastic fields for finite walls with dis-
ordered dislocation arrays. MacLaren and Aindow [7] analyzed dis-
location networks at a low-angle near twist boundary in zinc using
TEM. The experimental work done by Mughrabi [8,9] and Ungar
et al. [10] shows that dislocation boundaries and cell structures
produce long-range internal stresses. A composite model, devel-
oped by Mughrabi [8,9] explains the origin of the long-range inter-
nal stresses based on the heterogeneity of the dislocation structure.
It is suggested that long-range internal stresses develop as a result
of compatibility requirement between hard (dislocation boundary)
and soft (cell) materials. Another theory to explain the formation
and characteristics of dislocation boundaries is developed by Kuhl-
mann-Wilsdorf [11–13] and is referred to as the Low Energy Dislo-
cation Structures (LEDS) theory. As the name implies, among those
structures that are accessible to the dislocations, dislocations tend
to form a structure that minimizes the free energy per unit length
of the dislocation line. Hughes and Hansen and collaborators [14–
17] have carried out rigorous experimental studies of micro-struc-
tural evolution in various metals and alloys. They have performed a
comprehensive statistical study of dislocation boundaries, cell
structures and shear bands formation in various deformed metals.
Recently, the effect of dislocations and dislocation structures on
other material properties has been studied. Zhu et al. [18] studied
the interaction behavior between dislocation networks and matrix
dislocation in Ni-based single crystal alloy. Liu et al. [19] analyzed
the effect of deviation from the equilibrium state of grain bound-
aries on mechanical properties of ultrafine grained titanium with
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different properties and fractions of the grain boundary by simulat-
ing tensile tests in a finite element model. Since the evolution of
the microstructure is to a large extent determined by various dis-
location motion mechanisms (e.g., easy glide, cross-slip), which
are three-dimensional in nature, therefore the resulting dislocation
microstructure carries three-dimensional characteristics. The
above discussion calls for a 3D analysis of dislocation boundaries
for better understanding of these dislocation structures. Multi-
scale discrete dislocation plasticity has emerged as an excellent
numerical simulation technique for investigating various disloca-
tion structures [20]. A detailed 3D multi-scale discrete dislocation
plasticity analysis of experimentally observed dislocation bound-
aries was performed earlier [21], and results were presented on
self-stress field and dynamic stability of a single dislocation
boundary. In the present study, the effect of dislocation boundary
rotation angle on the generated self-stress field of the dislocation
boundary and interaction behavior of multiple dislocation bound-
aries will be investigated. In addition, the concept of shear stress
on various intersecting slip systems resolved from the self-stress
field of dislocation boundaries will be analyzed.

2. Multi-scale discrete dislocation plasticity

Multi-scale discrete dislocation plasticity (MDDP) has emerged
as a powerful tool to analyze various dislocation structures and
mechanisms. The core of MDDP lies in coupling two lengths scales:
micro (discrete dislocation dynamics analysis) and macro (contin-
uum elasto-viscoplasticity finite element analysis). The description
of the MDDP code used in the present studies is as follows.

2.1. Discrete dislocation dynamics

In discrete dislocation dynamics (DD) simulations, the plastic
deformation of a single crystal is obtained by explicitly accounting
for the evolution of a multitude of dislocation loops and curves.
The dislocations are discretized into segments of mixed character.
The Peach–Koehler force acting on a dislocation segment is calcu-
lated from the stress field of all other dislocations and the applied
stress. For a dislocation segment bounded by j and j + 1, the Peach
Koehler force Fj,j+1 on the segment is obtained by integration over
the entire segment length L, such that:

Fj;jþ1 ¼
XN�1

i¼1

1
L

Z
L
ðrD

i;iþ1ðpÞ þ raðpÞÞ � bj;jþ1

 !
� nj;jþ1dlþ Fj;jþ1-self

ð1Þ
where p is a field point on the dislocation segment j, j + 1, N is the
total number of nodes, rD

i;iþ1ðpÞ is the stress from a remote disloca-
tion segment bounded by i and i + 1, raðpÞ is any other externally
applied stress plus internal friction (if any) and stress induced by
other defects, bj,j+1 is the Burgers vector, nj;jþ1 is the line sense vec-
tor, and Fj,j+1-self is the Peach Koehler force corresponding to local
interaction between the segment adjacent to j, j + 1. Then, following
standard finite element procedure and using linear interpolation
shape functions over the segment, the Peach Koehler force per unit
length Fj,j+1 is distributed equally to the nodes j and j + 1. Thus, once
all the forces are assembled, the net force on each node would have
contributions from all the segments connected to it. The N disloca-
tion nodes move simultaneously in the glide direction over a char-
acteristic time corresponding to the least time increment required
for an interaction to take place. The governing equation of glide
motion for each dislocation node is nonlinear and given as:

m�i _v i þ
1

MiðT; PÞ
v i ¼ Fi glide-component ð2Þ

where m* is the effective mass per unit dislocation length, M is the
dislocation mobility which could depend on both temperature T and

pressure P, vi is the velocity of node i, _v i is the acceleration, and
Fi glide-component is the glide component of the Peach–Koehler force.
Thus, the motion and interaction of an ensemble of dislocations in
a 3-D crystal is integrated over time yielding macroscopic plastic
distortion, which is defined as:

_ep ¼
XK

i¼1

livgi

2V
ðni � bi þ bi � niÞ ð3Þ

where li is the segment length, ni is a unit normal to the slip plane,
vgi is the magnitude of the glide velocity, K is the total number of
segments and V is the volume of the representative volume element
(RVE). For further details of the DD code, please see Zbib et al.
[22,23] and Rhee et al. [24].

2.2. Integrating multi-scale approach

Using DD for infinite domain problems, the computational cell
as a whole is considered as an RVE, with either reflection boundary
conditions (ensuring the continuity of the dislocation curve) or
periodic boundary conditions (ensuring conservation of the dislo-
cation flux across boundaries as well as continuity). However, for
the simulation of a unit cell representing, say a grain or for finite
domain problems, these models are no longer valid and a more rig-
orous treatment of boundary conditions is required to account for
dislocation image stresses. This issue has been addressed by devel-
oping a 3-D multi-scale model that couples the microscale DD anal-
ysis with the continuum scale via a viscoplasticity model. In this
model, the governing equations for the continuum scale are based
on an RVE over which the deformation field is assumed to be
homogeneous. On the macroscale, the material obeys the law of
conservation of linear momentum:

div S ¼ €uq ð4Þ

and the energy equation:

qcv
_T ¼ kr2T þ S � _ep ð5Þ

where S is the stress tensor, u is the particle displacement, q, cv and
k are the mass density, specific heat and thermal conductivity
respectively. For elasto-viscoplastic behavior, the strain rate tensor
_e is decomposed into an elastic part _ee and a plastic part _ep such
that:

_e ¼ _ee þ _ep ð6Þ

For most metals, the incremental form of Hooke’s law can be
used to express the elastic response for large deformation and
material rotation such that:

S
�
¼ ½Ce� _ee; S

�
¼ _S�xSþ Sx; x ¼W�Wp ð7Þ

where Ce is a fourth order tensor, x is the spin of the substructure
and is given as the difference between the material spin W and
plastic spin Wp. Combining Eqs. (6) and (7) leads to:

S
�
¼ ½Ce�½ _e� _ep� ð8Þ

When coupling DD with FE, the principle of superposition is
employed to correct for the actual boundary conditions, for both
finite domain and homogeneous materials. The dislocations con-
tained within the RVE give rise to an internal stress SD (homoge-
nized over the element) and the effective total stress within the
RVE is the sum of the stresses by all external agencies and the
internal stress SD. This way, the long-range stress is treated as
internal variables, yielding an efficient numerical scheme. SD is
responsible for the energy stored in the material by virtue of pres-
ence of dislocations. With this approach, one can deal with mixed
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