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a b s t r a c t

Cobalt disilicide (CoSi2) is an interesting and promising metallic material with numerous applications in
silicon microelectronics. In this article, various thermodynamic properties of CoSi2 are studied using first-
principles density-functional theory. In particular, Gruneisen parameter, thermal expansion coefficients,
Debye temperature and temperature dependent heat capacities are determined using quasiharmonic
approximation. The Gruneisen parameter dispersion curves are obtained from the variation of phonon
frequencies with volume. The frequencies of zone center phonon modes are calculated to be
348.2 cm�1 (IR active) and 347.1 cm�1 (Raman active). The calculated linear thermal expansion coeffi-
cient (�9.1 � 10�6/K) and Debye temperature (�547 K) are found to be in good agreement with reported
experimental values. Further, the thermodynamic Gruneisen parameter is calculated to be 1.66. The pre-
sented results are expected to generate further interest in experimental investigations of thermal prop-
erties of CoSi2.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transition metal silicides are of great importance not only
because of their diverse technological applications but also from
fundamental scientific point of view [1–10]. They are excellent
materials for applications as ohmic contacts, Schottky barrier con-
tacts, diffusion barriers, gate electrodes and local interconnects in
complimentary metal–oxide–semiconductor (CMOS) devices [1–
4]. In fact, silicides have played an important role in the develop-
ment of silicon based microelectronics. Semiconducting silicides
are now being considered for applications in silicon-based opto-
electronics (IR detectors and LEDs), photovoltaics and as thermo-
electric materials [11]. In addition to technological applications,
silicides also exhibit many fascinating properties such as kondo
lattice behavior, quantum critical phase transition, and non-Fermi
liquid behavior [12,13]. Some silicides and their alloys also display
diverse magnetic behavior and phases such as helical magnetic
ordering, and Skyrmion magnetic phases [14–16]. Over past three
decades, silicides of titanium, cobalt, and nickel have been used in
integrated silicon microelectronics. Among the transition metal sil-
icides, CoSi2 is particularly interesting because it is one of the few
silicides which can be grown epitaxially on single-crystalline
Si(111) substrate [17,18]. Further, CoSi2 has relatively low resistiv-
ity than other silicides such as NiSi2 making it even more attractive
for technological applications. The fabricated single-crystal

CoSi2/Si(111) interfaces generally show a B-type orientation with
interface structure varying according to the preparation [17,18].

Although CoSi2 have been investigated experimentally due to
its technological importance, relatively few theoretical studies of
it have been reported. In particular, no theoretical work on its ther-
modynamic properties has been reported to best of our knowledge.
In this article, we present theoretical investigation of various ther-
modynamic properties and parameters of CoSi2 within the frame-
work of first principles density-functional theory.

In particular we calculate (1) volume dependence of phonon
spectrum, (2) Gruneisen parameter dispersion, (3) linear and vol-
ume expansion coefficients, (4) thermal expansion, (5) tempera-
ture dependent heat capacities at constant volume and pressure
(6) bulk modulus and its temperature dependence and (7) Debye
temperature.

The rest of the paper is organized as follows. Theoretical details
and computational methodology are described in Sections 2 and 3
respectively. The results and discussions are presented in Section 4.
Finally, the concluding remarks are given in Section 5.

2. Theoretical details

In quasiharmonic approximation the Helmholtz free energy F(V,
T) at volume V and temperature, T, is given by [19]
FðV ; TÞ ¼ EðVÞ þ Fv ibðm; TÞ

¼ EðVÞ þ kBT
X
~q

X
n

ln 2 sin h
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where E(V) is static contribution to internal energy at temperature
equal to 0 K, Fvib is vibrational contribution to free energy, mnð~q;VÞ is
the frequency of n’th phonon mode at the wave vector~q in the Brill-
ouin zone of the crystal with volume V (per cell), h is the Planck’s
constant, and kB is the Boltzman’s constant respectively. The equi-
librium state of a given crystal is determined by the condition that
the variation of Helmholtz free energy (F(V, T)) with respect to all
possible internal degrees of freedom, at a given temperature, T,
and volume, V, is at minimum. In this study, the static energy E(V)
is obtained from standard ab-intio DFT calculations. It should be
noted that the anharmonic contributions to the Free energy are
approximately accounted through the volume dependence of pho-
non frequencies and through deviation of E(V) from the quadratic
behavior. Further the contribution of electronic excitations to the
Free energy is neglected since the temperatures considered here
are well below the electronic energy scale.

The mode Gruneisen parameter cnð~qÞ corresponding to n’th
mode and wave vector ~q in the Brillouin zone is given by [20]

cnð~qÞ ¼ �
@mnð~qÞ
@V

V
mnð~qÞ

ð2Þ

The linear thermal expansion coefficient a is given by [20]

a ¼ 1
lðT ¼ 298 KÞ

@l
@T

� �
p

ð3Þ

Similarly, the volume thermal expansion coefficient b is defined
as

b ¼ 1
VðT ¼ 298 KÞ

@V
@T

� �
p

ð4Þ

where a(=298 K) and V(T = 298 K) are lattice constant and volume of
the unit cell at temperature T = 298 K. The temperature dependence
of the bulk modulus, B(T), is related to second derivative of the Free
energy and is given by

BðTÞ ¼ V
@2F

@V2

 !
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In case of crystals with isotropic or cubic symmetry, the linear
expansion is independent of direction and related to volume
expansion as b = 3a.

The heat capacity at the constant volume, CV, is given by

CV ¼ T
@S
@T
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The thermodynamic Gruneisen parameter c is calculated from
the weighted average of mode Gruneisen parameter cnð~qÞ and is
given by

c ¼
P

n

P
~qcnð~qÞCV ;nð~qÞP

n

P
~qCV ;nð~qÞ

ð7Þ

The heat capacity at the constant pressure, Cp, is given by

Cp ¼ CV þ a2
V ðTÞBVT ð8Þ

The thermal expansion, e, is described by

e ¼ aðTÞ � aðT ¼ 298KÞ
aðT ¼ 298KÞ ð9Þ

where a(T) and a(T = 298K) are the equilibrium lattice constants at
temperature T and 298 K, respectively. The phonon frequencies as a
function of temperature can be obtained approximately through

their volume dependence and can be expressed in terms of linear
thermal expansion (e) and thermodynamic Gruneisen parameter (c)

mðTÞ � mðT ¼ 298KÞ
mðT ¼ 298KÞ ffi 3ce ð10Þ

The Debye temperature can be calculated using average sound
velocity [21] and is given by

hD ¼
h
kB

3
4pVa

� �1=3

vm ð11Þ

where Va and vm are atomic volume and sound velocity respectively.
The longitudinal velocity, vl, and transverse velocity, vt, in the poly-
crystalline material is calculated using polycrystalline shear (G) and
bulk (B) moduli:

v t ¼
G
q

� �1=2

and v l ¼
3Bþ 4G

3q

� �1=2

ð12Þ

Finally, the average sound velocity in polycrystalline materials
is calculated using vl and vt as follows

vm ¼
1
3

2
v3

t
þ 1

v3
l
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ð13Þ

The polycrystalline shear (G) and bulk (B) moduli are obtained
using single crystal elastic constants [22].

3. Computational methodology

Density-functional calculations (DFT) [23] are performed using
the ultrasoft pseudopotentials (USPP) [24] as implemented in the
PWscf package [25]. The Perdew–Zunger (PZ) parameterization of
the local density approximation for exchange and correlation is
employed. The kohn–sham wavefunctions are expanded using a
standard plane wave basis set with a kinetic energy cutoff of
40 Ry. The Brillouin zone sampling is done using a 16 � 16 � 16
Monkhorst–Pack k-point mesh. The structures are relaxed until
the largest force becomes less than 10�3 eV/Å and the calculations
are converged to 10�7 eV/cell. To determine phonon frequencies in
the Brillouin zone, we use DFT-Linear response with iterative
Green’s function approach of density-functional perturbation the-
ory as implemented in PWscf package [25].

4. Results and discussions

CoSi2 crystallizes in the primitive fcc structure in CaF2-type lat-
tice with space group Fm3m. There is one Co and two Si atoms at
(0,0,0), (1/4,1/4,1/4) and (3/4,3/4,3/4) positions in the unit cell.
The lattice constant of CoSi2 is calculated to be 5.28 Å and is in
good agreement with the experimental value of 5.36 Å. In Fig. 1a
the total density of states of CoSi2 are shown, and in Fig. 1b and
c, we show the partial density of states projected onto Co and Si
atoms, respectively. The states below the Fermi energy in CoSi2

are derived primarily from the 3d orbitals of Co. Further, Co 3d
orbitals are delocalized and extend throughout the entire valence
band. Also, the density of states at the Fermi level in CoSi2 is signif-
icantly smaller than those in pure bulk Co, suggesting that CoSi2 is
a poor metal. It is also clear that the Fermi level in CoSi2 misses the
high density region of 3d states primarily due to low volume den-
sity of d-orbitals in the CoSi2 as compared to that in bulk Co. Fig. 2
shows the charge density contours on CoSi2 ð1 �10Þ plane. As can be
seen in Fig. 2, relatively strong three-center, Co–Si–Co, covalent
bonds are formed between Co and Si atoms due to hybridization
between these atoms.

Next the phonon modes of CoSi2 in the Brillouin zone of the fcc
lattice are calculated. The zone-center phonon modes of CoSi2
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