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a b s t r a c t

In this article, a multi-scale computational homogenization scheme is proposed for the study of compos-
ite materials. A classical unilateral contact law has been incorporated in the microscopic level, for the
investigation of the contact between the constitutive materials. The either-or decision resulting from
the contact-no contact condition in the microscopic scale, makes the problem non-linear. This change
in the contact state of the microscopic level, is taken into account by the proposed approach. Debonding
between the matrix and the surrounding fibers and its impact on the macroscopic structure, are depicted.
In addition, a change in the direction of the macroscopic load during analysis, results in a non-linear
behavior due to the alteration of the microscopic contact state. The distribution of the displacement jump
is influenced in this case, as well.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the present work a multi-scale, computational homogeniza-
tion scheme is proposed for the study of composite materials. A
classical unilateral contact law is applied in the microscopic inter-
faces to capture the contact behavior of the constitutive materials.

Several different, analytical and numerical approaches have been
proposed in the past for the investigation of complex, non-linear,
heterogeneous structures, like composites. Analytical/mathemati-
cal methods, like asymptotic homogenization [1], can be more
accurate in the description of the micro structure, for relatively sim-
ple microscopic patterns and constitutive laws. On the other hand,
numerical methods may be used for the simulation of complex
microscopic geometries, over a statistically defined representative
amount of material [2].

Numerical/computational homogenization can be extended to
cover several non-linear effects, like contact, debonding, damage
and plasticity [3]. According to numerical homogenization, a unit
cell is explicitly solved and the resulting average quantities are then
used for the determination of the parameters of a macroscopic
constitutive law [4,5].

From another point of view, multi-scale computational homog-
enization incorporates a concurrent analysis of both the macro and
the microstructure in a nested multi-scale approach, [6–14].
Within this method, the macroscopic constitutive behavior is
determined during simulation, after solving the microscopic prob-
lem and transferring the necessary information on the macroscopic
scale. This approach, which is generally called FE2, offers the
flexibility of simulating complex microstructural patterns, with
every kind of non-linearity. Furthermore, the evolution of the
microscopic structure can be taken into account, by using this
method. More recently, some sophisticated efforts for investigating
localization phenomena with computational homogenization
tools, appear in the literature [15–20]. It is worth noticing that in
the majority of these articles, a continuous damage law has been
used to simulate failure in the microscopic scale. In the macro-
scopic scale a discontinuous law describing a macro crack is
numerically obtained.

Some efforts toward coupling contact mechanics and computa-
tional homogenization also appear. In [21,22] contact mechanics is
coupled with multi-scale homogenization for the study of rough
surfaces while in [23] the investigation of a three body frictional
system with rigid particles, embedded between a deformable
elastic solid and a rigid surface, takes place. Debonding between
the matrix and the surrounding inclusions of a composite material
has been also studied in [24] by using contact mechanics and
homogenization concepts. In [25,26] an interfacial failure model
with normal and tangential brittle-elastic springs and a bi-linear
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cohesive zone model have been developed respectively, for the
simulation of progressive debonding in the matrix-fiber interface
of composite materials. In [27] a bilinear cohesive law is used to
simulate failure between the fibers and the matrix interface; then,
a comparison between periodic and minimal kinematic boundary
conditions is given. In [28] a unilateral contact-friction and a dam-
age evolution law have been used for the simulation of a masonry,
brick–mortar interface, within a homogenization framework.

In this article an Augmented Lagrangian formulation has been
used for the simulation of the contact state between the constitu-
tive materials, in the microscopic scale of composite structures. A
continuous macroscopic model is considered in the macro scale
and an overall multi-scale contact computational homogenization
scheme is developed. With this numerical scheme, several phe-
nomena related to the microscopic contact conditions and its
impact on the macroscopic model, have been investigated. Among
them are included the influence of the jump of displacements on
the macroscopic response, as well as the alteration of the macro-
scopic load direction during analysis resulting in a microscopic
contact change and its impact on the macroscopic structural
behavior.

2. A short introduction to computational homogenization

The approach adopted in this article is related to the concurrent
analysis of the macroscopic and the microscopic structure, respec-
tively. According to the classical formulation of the multi-scale
computational homogenization [6–8,10], two nested boundary
value problems are concurrently solved. The initial heterogeneous
macroscopic structure is equivalent with a homogeneous one, in
each Gauss point of which, a suitably defined RVE is correlated.
This RVE includes every heterogeneity and non-linearity of the
material.

With linear or periodic boundary conditions, a macroscopic
strain is the loading of the RVE. After analysis and convergence
of each RVE in every Gauss point, results concerning the average
stress and the stiffness are given back to the macroscopic structure,
Fig. 1. No assumption for the constitutive law of the macroscopic
structure is a priori considered, thus the macroscopic constitutive
behavior is numerically obtained. This is a practical solution to
the major question of homogenization, namely which are the prop-
erties of the homogeneous constitutive law.

3. Averaging relations

According to the Hill–Mandel condition or energy averaging
theorem, the macroscopic volume average of the variation of work
equals to the local work variation, on the RVE [29]:

rM : d�M ¼ 1
Vm

Z
Vm

rm : d�mdVm ð1Þ

Among others, three widely used types of loading states, which sat-
isfy the above condition, can be applied to the RVE: (a) prescribed
linear displacements, (b) prescribed tractions, (c) periodic boundary
conditions. In the present study both linear displacement and peri-
odic boundary conditions have been used.

According to linear displacement boundary conditions, the
loading in the boundaries of the RVE is given by the following
relation:

uj@Vm
¼ �Mx ð2Þ

where a loading strain �M is applied to the boundaries @Vm of the
RVE. With x is denoted the matrix with the undeformed coordinates
of the boundary nodes of the RVE.

Periodic boundary conditions require periodic displacements, as
well as antiperiodic tractions, in the opposite boundaries of the
RVE. In particular, the displacements of the opposite boundaries
are given by the following equations:

uT � uB ¼ u4 � u1 ð3aÞ
uL � uR ¼ u1 � u2 ð3bÞ

where the displacements in the top, bottom, left and right boundary
are estimated by using the prescribed displacements of three corner
nodes of the RVE, namely 1, 2 and 4, given by relation (2).

In order to proceed in the formulation of a homogenization
scheme, the average quantities of both the microscopic strain
and stress should be defined. The constitutive relation will be then
numerically built, as is shown later in this article. The general aver-
aging relations, are:

h�iVm
¼ 1

Vm

Z
Vm

�mdVm; hriVm
¼ 1

Vm

Z
Vm

rmdVm ð4Þ

Eq. (4) can be further simplified. The volume average microscopic
strain is equal to the macroscopic strain which has been applied
as loading to the boundaries of the RVE:

h�iVm
¼ �M ð5Þ

In case prescribed displacements are applied to the RVE, the follow-
ing simplified formulation for the macroscopic stresses, has been
chosen [10,13]:

hriVm
¼ 1

Vm
fx ¼ rM ð6Þ

where f is the matrix of the resulting external forces in the unde-
formed coordinates of the boundary nodes x of the RVE, after micro-
scopic analysis has been completed.

A similar relation is chosen for the macroscopic stress, in case
periodic boundary conditions are used [10,13]:

hriVm
¼ 1

Vm
fpxp ¼ rM ð7Þ

Fig. 1. Schematic representation of the multi-scale, computational homogenization.
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