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In this paper we present details of our developed open source software, cubic-elastic, for the calculation of
the elastic constants (ECs) of cubic crystals. The comparison of the calculated ECs for various types of
cubic systems by this software with those from the other available softwares as well as experimentally
measured results confirms that our code can predict reliable results. The success of our code originates
from its use of single deformation. The other codes usually use rhombohedral strain (RS). RS leads to
3By + 4C44 expression. Hence, RS systematically adds error to the C44 through the bulk modulus calcula-
tions, and thereby may not be mathematically an appropriate approach. The total energy is accurately
calculated by the WIEN2k within the highly accurate full-potential (linearized) augmented plane-waves
plus local orbitals method. The ECs are calculated by the second-order derivatives of the fitted polynomi-
als to the calculated total energies with respect to the elements of strain tensors at zero strains. We have
presented the theoretical background and methodology of the cubic-elastic. We have validated the soft-
ware by taking a variety of cubic samples into consideration and calculated their ECs. The zero bulk error
calculations show that the results obtained from the cubic-elastic are in good agreement with the
available experimental data and the previous theoretical results and predicts the sign of elastic constants
correctly. The calculated Cauchy’s pressure (C”) and Poisson’s ratio (v) of LaS predict that it is an ionic
compound. This prediction is in agreement (disagreement) with the previous ionic (covalent) bonds
prediction deduced from previous v (C").

Keywords:

Density functional calculations
Mechanical properties

Elastic constants

Cubic-elastic

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Materials modelling and simulations have attracted great atten-
tion in the last decade because of the substantial growth in the pro-
cessing speed of computers and progressive algorithms. Density
functional theory based calculations are extensively used in the
study of various physical and chemical properties of solids with
great accuracy. One of these properties of solids is elastic compli-
ance constants or simply elastic constants (ECs). Elastic constants
is a response function to the external forces and are of significant
importance in the materials properties [1-4]. The ECs have a rela-
tionship with the dynamical matrix [5] within the theory of elastic-
ity [6] based on the continuum assumption or macroscopic nature
of materials. On the other hand, the dynamical matrix can be
related to the phonon frequencies which in turn have a connection

* Corresponding author at: Center for Computational Materials Science,
University of Malakand, Chakdara, Pakistan.
E-mail address: ahma5532@gmail.com (I. Ahmad).

http://dx.doi.org/10.1016/j.commatsci.2014.08.027
0927-0256/© 2014 Elsevier B.V. All rights reserved.

with the atomic force constants through the discrete or micro-
scopic nature of materials [5,7]. Consequently, the ECs provide a
bridge between the atomic and the large-scale worlds. Therefore,
the ECs can be used to evaluate the validity and accuracy of the
microscopic and macroscopic theories by comparing the results
with the corresponding experimental data. The ECs relate stress
tensor to strain tensor [8,6] and can be used to distinguish elastic
from plastic regimes by the elastic stability criteria [9]. For small
deformations, the strain (stress) components can be linearly
expanded in terms of the stress (strain) components whose expan-
sion coefficients are elastic constants (elastic stiffness) [10]. The
ECs provide a tool to obtain technological and mechanical impor-
tant properties such as strength, hardness, wear, Voigt’s modulus,
Reuss’s modulus, Hill's modulus, shear modulus, Young’s modulus,
bulk modulus, elastic stiffness coefficients, Poisson’s ratio, and
melting temperature [11]. Phonon density of states, phonon
dispersion spectrum, and thereby phonon heat capacity, entropy,
thermal expansion coefficient, and other thermodynamic proper-
ties are related to the ECs as well [12-14]. The sound velocities
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can also be obtained in different directions in a variety of materials
by the ECs and as a result Debye temperature [15,16]. Moreover,
based on the calculated elastic constants, we are able to define
the elastic anisotropy ratio which is an important physical quantity
for the structural phase stability of crystal structures [17]. All these
evidences indicate that ECs can play crucial role in the derivation of
many important physical quantities and evaluate the validity and
accuracy of the associated theories.

In practice there are other codes available for the ECs calcula-
tion, even together with the WIEN2K, but one of the issues of these
softwares is the systematic errors which is accumulated when one
EC is calculated by others, discussed in details in the next sections.
The other reason which also motivated us to develop new software
was the use of the self-inconsistent softwares for the prediction of
the nature of bond for cubic systems by Cauchy’s pressure and
Poisson’s ratio [18-20]. Hence, we developed “cubic-elastic” using
our previous experience of “ortho-elastic” [21] software, to over-
come issues of the existing softwares for cubic systems and calcu-
late ECs efficiently in order to predict experimental data
accurately. In this work, we extend the zero bulk error EC calcula-
tions to ECs of cubic (or isometric) crystal systems which involve
a large family of important compounds ranging from 195 to 230
space group numbers which is freely available at the WIEN2k web-
site [22]. The underlying concepts and methodology in arriving at
the current version of the cubic-elastic is presented here. We utilize
the fact that the ECs can be calculated by the second-order deriv-
ative of a fitted polynomial of energy, E(e), with respect to the
strains, €, at zero strains, i.e., Oi)i(f) le_o [23]. Cubic-elastic is inter-
faced to the WIEN2k code [24] which accurately solves the set of
single particle Kohn-Sham equations within a self-consistent pro-
cedure based on the full-potential (linearized) augmented plane-
waves plus local orbital, FP-(L) APW+lo, method [25]. We examine
the accuracy of the cubic-elastic software by calculating the ECs for
several cubic compounds. The results show that our calculated ECs
are in good agreement with the experimental and previous
theoretical data.

2. Theoretical background and computational details
2.1. Theoretical Background

ECs can be derived either from the calculated total ground state
energy E(x, €;), known as the energy approach discussed by Stadler
etal. [23], or from the relation between g and €; (6 < €;), known
as the stress theorem proposed by Nielsen and Martin [26]. Here, x
stands for V(P), the volume of (the exerted pressure on) the com-
pound in question, and ¢; (o) are the elements of strain (stress)
tensor [11]. In this work we utilize the energy approach [23] in
implementing cubic-elastic. We then calculate the ECs of the cubic
systems by means of the cubic-elastic as interfaced to the WIEN2k
code [24] within the ab initio FP-(L) APW+lo method [25]. To this
end, we need to apply three different kind of appropriate strains.
However, the energy approach does not tell us what kinds of strains
are to be used to estimate the ECs. What we do in practice is to
introduce some suitable strains to derive the ECs of cubic systems
in better agreement with the experiments. Naturally, the question
arises how well these strains can imitate the true ECs. We answer
this question qualitatively after we complete the methodology dis-
cussion in this section. The validation of the introduced strains will
be discussed in the later sections, where we show the accuracy of
our results within the cubic-elastic.

We proceed with the idea of the energy approach. The internal
energy of an elastic solid can be changed by a volumetric or dilation
strain (change in volume and/or in shape) and by distortional or
isochoric strain (change in shape but not in volume, i.e., volume-
conserving). The energy can be expanded in a Taylor series up to

the second-order about the unstrained situation for small deforma-
tions in the regime of Hooke’s law:

6 6
E(V7{€k}) =Ey+ Vo (ZO’iGiJr;ZCUE,‘Ej) (1)
i=1
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where {€,} denotes €;,¢€,,...,€, Vo(V) is the volume, Ey(E) is the
energy of the unstrained (strained) cubic system in question, and
Cy are the ECs. For simplicity, the elements of the two indexed
strain (stress) €; (o) tensor in Eq. (1) are transformed to those of
the single indexed ¢; (g;) tensor by means of Voigt notation which
uses the well-known transformations of 11 — 1,22 — 2,33 —
3,32 & 23 - 4,13 & 31 — 5, and 12 & 21 — 6. For the distortional
strain the volume is not changed, viz. AV = 0. In this case, the first
sum of Eq. (1) involves stress tensors multiplied by strain tensors.
The ECs can be calculated by taking the second-order partial deriv-
atives of Eq. (1) for both volumetric and distortional deformations
with respect to strains, at zero strains:

1| 0%E
Cij - 70 |:(96,‘3€j:| (2)
{e}=0

We calculate the total energy for the unstrained system, namely, Eo
in Eq. (1), by using the full-potential APW+lo method. The original
cubic system can be deformed by applying the following deforma-
tion matrix D:

1 2+2€ €6 €s
D=45+I=j € 2+ 26 €4 (3)
€5 €4 2+ 26

where € is the matrix representation of the symmetric strain tensor
in Voigt notation. After a small uniform deformation of the system,
the lattice vectors can be distorted in orientation and in length. The
distorted lattice vectors in their matrix representation, R’ (see
Appendix A), can be obtained by multiplying the matrix representa-
tion of the lattice vectors of an unstrained cubic structure, R, by D,
viz. R’ = RD. The elastic tensor of a cubic system can be determined
by three independent Cy;,Cy3, and Cy4 ECs. The following deforma-
tions are used in the Cubic-elastic software to determine the Cy;, and
Cia:

1+¢ 0 0
Doce=| 0 1-€ 0O 4)
0 0 &
1+¢ 0 0
Deupic = 0 1+e¢ O (5)
0 0 1+e¢

where D, is a distortional orthorhombic deformation, and Dp;c is
a volumetric cubic deformation. The Cy, is determined in Cubic-elas-
tic by:

1 ¢ O
Diooc=|€ 1 0 (6)

where D,,on0c iS a distortional monoclinic deformation.
The energy for these three distortions can be obtain as (see
Appendix B):

E(V,€) =Eo+Vo{(C11 — C12)€* +0(e*)} (7)
E(V,€) =Ey+Vo€(01 + 02 +03) +Vo{%(cn +2Cyp)€? +O(e3)} 8)

and

E(V,€) = Eg + Vo{(2Caq)€% + O(e*)} (9)
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